Glial growth factors, proteins that are mitogenic for Schwann cells, and several ligands for the p185erbB2 receptor, are products of the same gene. Alternative splicing of the messenger RNA generates an array of putative membrane-attached, intracellular and secreted signalling proteins, at least some of which are expressed in the developing spinal cord and brain. These factors are probably important in the development and regeneration of the nervous system.
Purified bovine brain phosphatidylinositol 3-kinase (Pl3-kinase) is composed of 85 kd and 110 kd subunits. The 85 kd subunit (p85 alpha) lacks Pl3-kinase activity and acts as an adaptor, coupling the 110 kd subunit (p110) to activated protein tyrosine kinases. Here the characterization of the p110 subunit is presented. cDNA cloning reveals p110 to be a 1068 aa protein related to Vps34p, a S. cerevisiae protein involved in the sorting of proteins to the vacuole. p110 expressed in insect cells possesses Pl3-kinase activity and associates with p85 alpha into an active p85 alpha-p110 complex that binds the activated colony-stimulating factor 1 receptor. p110 expressed in COS-1 cells is catalytically active only when complexed with p85 alpha.
Affinity-purified bovine brain phosphatidylinositol 3-kinase (PI3-kinase) contains two major proteins of 85 and 110 kd. Amino acid sequence analysis and cDNA cloning reveals two related 85 kd proteins (p85 alpha and p85 beta), which both contain one SH3 and two SH2 regions (src homology regions). When expressed, these 85 kd proteins bind to and are substrates for tyrosine-phosphorylated receptor kinases and the polyoma virus middle-T antigen/pp60c-src complex, but lack PI3-kinase activity. However, an antiserum raised against p85 beta immunoprecipitates PI3-kinase activity. The active PI3-kinase complex containing p85 alpha or p85 beta and the 110 kd protein binds to PDGF but not EGF receptors. p85 alpha and p85 beta may mediate specific PI3-kinase interactions with a subset of tyrosine kinases.
Mitosis is a highly coordinated process that assures the fidelity of chromosome segregation. Errors in this process result in aneuploidy which can lead to cell death or oncogenesis. In this paper we describe a putative mammalian protein kinase, AIM-1 (Aurora and Ipl1-like midbody-associated protein), related to Drosophila Aurora and Saccharomyces cerevisiae Ipl1, both of which are required for chromosome segregation. AIM-1 message and protein accumulate at G 2 /M phase. The protein localizes at the equator of central spindles during late anaphase and at the midbody during telophase and cytokinesis. Overexpression of kinase-inactive AIM-1 disrupts cleavage furrow formation without affecting nuclear division. Furthermore, cytokinesis frequently fails, resulting in cell polyploidy and subsequent cell death. These results strongly suggest that AIM-1 is required for proper progression of cytokinesis in mammalian cells.
The very early stages of the human B-cell differentiation pathway are poorly understood, primarily because of the lack of appropriate permanent cell lines. Epstein-Barr virus (EBV) is a putative human oncogenic virus which transforms human B cells in vitro into continuously proliferating cells. It has been believed that EBV transforms mature B cells, but recently, transformation of immature pre-B-cell lines has been reported, suggesting that EBV might also transform cells much earlier in the B-cell lineage. We report here the establishment of cell lines transformed by EBV at various stages of the B-cell differentiation pathway. Interestingly, two lines showed the complete absence of immunoglobulin synthesis and the lack of immunoglobulin gene rearrangement despite containing EBV genome and surface markers of B cells. Our results indicate that EBV can infect and transform cells of the B lymphocyte lineage even before immunoglobulin gene rearrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.