OBJECTIVEThe significant roles of brown adipose tissue (BAT) in the regulation of energy expenditure and adiposity are established in small rodents but have been controversial in humans. The objective is to examine the prevalence of metabolically active BAT in healthy adult humans and to clarify the effects of cold exposure and adiposity.RESEARCH DESIGN AND METHODSIn vivo 2-[18F]fluoro-2-deoxyglucose (FDG) uptake into adipose tissue was measured in 56 healthy volunteers (31 male and 25 female subjects) aged 23–65 years by positron emission tomography (PET) combined with X-ray computed tomography (CT).RESULTSWhen exposed to cold (19°C) for 2 h, 17 of 32 younger subjects (aged 23–35 years) and 2 of 24 elderly subjects (aged 38–65 years) showed a substantial FDG uptake into adipose tissue of the supraclavicular and paraspinal regions, whereas they showed no detectable uptake when kept warm (27°C). Histological examinations confirmed the presence of brown adipocytes in these regions. The cold-activated FDG uptake was increased in winter compared with summer (P < 0.001) and was inversely related to BMI (P < 0.001) and total (P < 0.01) and visceral (P < 0.001) fat areas estimated from CT image at the umbilical level.CONCLUSIONSOur findings, being against the conventional view, indicate the high incidence of metabolically active BAT in adult humans and suggest a role in the control of body temperature and adiposity.
Brown adipose tissue (BAT) burns fat to produce heat when the body is exposed to cold and plays a role in energy metabolism. Using fluorodeoxyglucose-positron emission tomography and computed tomography, we previously reported that BAT decreases with age and thereby accelerates age-related accumulation of body fat in humans. Thus, the recruitment of BAT may be effective for body fat reduction. In this study, we examined the effects of repeated stimulation by cold and capsinoids (nonpungent capsaicin analogs) in healthy human subjects with low BAT activity. Acute cold exposure at 19°C for 2 hours increased energy expenditure (EE). Cold-induced increments of EE (CIT) strongly correlated with BAT activity independently of age and fat-free mass. Daily 2-hour cold exposure at 17°C for 6 weeks resulted in a parallel increase in BAT activity and CIT and a concomitant decrease in body fat mass. Changes in BAT activity and body fat mass were negatively correlated. Similarly, daily ingestion of capsinoids for 6 weeks increased CIT. These results demonstrate that human BAT can be recruited even in individuals with decreased BAT activity, thereby contributing to body fat reduction.
White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARγ in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context. FSP27 expression correlated with induction of differentiation in cultured preadipocytes, and the protein localized to lipid droplets in murine white adipocytes in vivo. Ablation of FSP27 in mice resulted in the formation of multilocular lipid droplets in these cells. Furthermore, FSP27-deficient mice were protected from diet-induced obesity and insulin resistance and displayed an increased metabolic rate due to increased mitochondrial biogenesis in white adipose tissue (WAT). Depletion of FSP27 by siRNA in murine cultured white adipocytes resulted in the formation of numerous small lipid droplets, increased lipolysis, and decreased triacylglycerol storage, while expression of FSP27 in COS cells promoted the formation of large lipid droplets. Our results suggest that FSP27 contributes to efficient energy storage in WAT by promoting the formation of unilocular lipid droplets, thereby restricting lipolysis. In addition, we found that the nature of lipid accumulation in WAT appears to be associated with maintenance of energy balance and insulin sensitivity.
Brown adipose tissue (BAT) can be identified by 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) combined with X-ray computed tomography (CT) in adult humans. The objective of this study was to clarify the relationship between BAT and adiposity in healthy adult humans, particularly to test the idea that decreased BAT activity may be associated with body fat accumulation with age. One hundred and sixty-two healthy volunteers aged 20-73 years (103 males and 59 females) underwent FDG-PET/CT after 2-h cold exposure at 19 °C with light clothing. Cold-activated BAT was detected in 41% of the subjects (BAT-positive). Compared with the BAT-negative group, the BAT-positive group was younger (P < 0.01) and showed a lower BMI (P < 0.01), body fat content (P < 0.01), and abdominal fat (P < 0.01). The incidence of cold-activated BAT decreased with age (P < 0.01), being more than 50% in the twenties, but less than 10% in the fifties and sixties. The adiposity-related parameters showed some sex differences, but increased with age in the BAT-negative group (P < 0.01), while they remained unchanged from the twenties to forties in the BAT-positive group, in both sexes. These results suggest that decreased BAT activity may be associated with accumulation of body fat with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.