Background: While tumour necrosis factor a (TNF-a) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wildtype mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-a, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-a administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-a/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.
Tumours are highly complex tissues composed of carcinoma cells and surrounding stroma, which is constructed by various different types of mesenchymal cells and an extracellular matrix (ECM). Carcinoma-associated fibroblasts (CAFs), which consist of both fibroblasts and myofibroblasts, are frequently observed in the stroma of human carcinomas, and their presence in large numbers is often associated with the development of high-grade malignancies and poor prognoses. Moreover, in human tumour xenograft models, CAFs extracted from the tumour are more capable of promoting tumour growth through their interactions with carcinoma cells when compared to those isolated from non-cancerous stroma. Taken together, these observations strongly suggest that CAFs actively contribute to tumour progression. In this review we highlight the emerging roles of these cells in promoting tumourigenesis, and we discuss the molecular mechanisms underlying their tumour-promoting capabilities and their cellular origin.
Background-Acute aortic dissection (AAD) is a life-threatening vascular disease without effective pharmaceutical therapy. Matrix metalloproteinases (MMPs) are implicated in the development of chronic vascular diseases including aneurysm, but the key effectors and mechanism of action remain unknown. To define further the role of MMPs in AAD, we screened circulating MMPs in AAD patients, and then generated a novel mouse model for AAD to characterize the mechanism of action. Methods and Results-MMP9 and angiotensin II were elevated significantly in blood samples from AAD patients than in those from the patients with nonruptured chronic aortic aneurysm or healthy volunteers. Based on the findings, we established a novel AAD model by infusing angiotensin II to immature mice that had been received a lysyl oxidase inhibitor, -aminopropionitrile monofumarate. AAD was developed successfully in the thoracic aorta by angiotensin II administration to -aminopropionitrile monofumarate-treated wild-type mice, with an incidence of 20%, 80%, and 100% after 6, 12, and 24 hours, respectively. Neutrophil infiltrations were observed in the intima of the thoracic aorta, and the overexpression of MMP9 in the aorta was demonstrated by reverse transcription polymerase chain reaction, gelatin zymography, and immunohistochemistry. The incidence of AAD was reduced significantly by 40% following the administration of an MMP inhibitor and was almost blocked completely in MMP Ϫ/Ϫ mice without any influence on neutrophil infiltration. Neutrophil depletion by injection of anti-granulocyte-differentiation antigen-1 (anti-Gr-1) antibody also significantly decreased the incidence of AAD. Conclusions-These data suggest that AAD is initiated by neutrophils that have infiltrated the aortic intima and released MMP9 in response to angiotensin II. (Circulation. 2012;126:3070-3080.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.