We establish the coincidence of two classes of Kato class measures in the framework of symmetric Markov processes admitting upper and lower estimates of heat kernel under mild conditions. One class of Kato class measures is defined by way of the heat kernel, another is defined in terms of the Green kernel depending on some exponents related to the heat kernel estimates. We also prove that pth integrable functions on balls with radius 1 having a uniformity of its norm with respect to centers are of Kato class if p is greater than a constant related to the estimate under the same conditions. These are complete extensions of some results for the Brownian motion on Euclidean space by Aizenman and Simon. Our result can be applicable to many examples, for instance, symmetric (relativistic) stable processes, jump processes on d-sets, Brownian motions on Riemannian manifolds, diffusions on fractals and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.