A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.
The growth rate, birth rate, death rate and production of the cladocera of Lake Kasumigaura were studied. Standing crop of zooplankton seemed to be governed by predation rather than food. Maximum productivity of cladocerans was observed in late August and early September. There were differences in production between sampling stations. The highest production was recorded in the most eutrophic basin, where heavy water blooms of Microcystis aeruginosa occurred. Maximum secondary production coincided with maximum primary production, which was mainly due to M. aeruginosa. Cladocerans probably utilize decomposed or decomposing Microcystis cells and bacteria in summer. Estimates of annual production of cladocerans varied from 4.2 to 13.1 g dry wt + m-3, and annual P:B ratios ranged from 36 to 108. The production of cladocerans in Takahamairi Bay was 2.7% of gross primary production.
Four experiments were conducted to evaluate Microcystis as food for zooplankton in Lake Kasumigaura, and the following results were obtained. (1) Moina micrura (Cladocera) showed little growth and no reproduction when the animal was reared with Microcystis cultured in the laboratory. The animal did not grow nor reproduce well when Chlorella was mixed with Microcystis as food. (2) Moina micrura assimilated Microcystis much less than Chlorella when the animal fed on single species of Microcystis or a mixture with Chlorella.(3) Microcystis collected from Lake Kasumigaura could not be utilized by Moina micrura even though the colonies were broken up into edible sizes. However, the alga turned into utilizable food when it was decomposed. (4) No inhibitors of Moina micrura population growth could be found in the non-filtered water of Lake Kasumigaura where Microcystis was blooming heavily. Decomposed Microcystis seemed to be utilized by zooplankton as an important food source in Lake Kasumigaura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.