Spin-1/2 Heisenberg antiferromagnets Cs2CuCl4 and Cs2CuBr4 with distorted triangular-lattice structures are studied by means of electron spin resonance spectroscopy in magnetic fields up to the saturation field and above. In the magnetically saturated phase, quantum fluctuations are fully suppressed, and the spin dynamics is defined by ordinary magnons. This allows us to accurately describe the magnetic excitation spectra in both materials and, using the harmonic spin-wave theory, to determine their exchange parameters. The viability of the proposed method was proven by applying it to Cs2CuCl4, yielding J/kB=4.7(2) K, J'/kB=1.42(7) K, [J'/J≃0.30] and revealing good agreement with inelastic neutron-scattering results. For the isostructural Cs2CuBr4, we obtain J/kB=14.9(7) K, J'/kB=6.1(3) K, [J'/J≃0.41], providing exact and conclusive information on the exchange couplings in this frustrated spin system.
5-Endo-trig ring-closure is recognized as a disfavored process. However, a number of examples of such a type of cyclization have recently been reported. This review focuses on studies of 5-endo-trig radical cyclizations that provide new syntheses of fivemembered carbo-and heterocyclic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.