SPHERE is the VLT second generation planet hunter instrument. Installed since may 2014 on UT3, the system has been commissionned and verified for more than one year now and routinely delivers unprecedented images of star surroundings, exoplanets and dust disks. The exceptionnal performance required for this kind of observation makes the appointment: a repeatable Strehl Ratio of 90% in H band, a rough contrast level of 10-5@0.5 arcsec, and reaches 10-6 at the same separation after differential imaging (SDI, ADI). The instrument also presents high contrast levels in the visible and an unprecedented 17mas diffraction-limited resolution at 0.65 microns wavelength. SAXO is the SPHERE XAO system, allowing the system to reach its final detectivity. Its high performance and therefore highly sensitive capacities turns a new eye on telescope environement. Even if XAO performance are reached as expected, some unexpected limitations are here described and a first work around is proposed and discussed. Spatial limitation: wave-front aberrations have been identified, deviating from kolmogorov statistics, and therefore not easily seen and compensated for by the XAO system. The impact of this limitations results in a degraded performance in some particular low wind conditions. Solutions are developped and tested on sky to propose a new operation procedure reducing this limitation. Temporal limitation: high amplitude vibrations on the low order modes have been issued, due to telescope environment and XAO behaviour. Again, a solution is developped and an assessment of its performance is dressed. The potential application of these solutions to E-ELT is proposed.
Detailed chemical abundances for five stars in two Galactic globular clusters, NGC 5466 and NGC 5024, are presented from high resolution optical (from the HobbyEberley Telescope) and infrared spectra (from the SDSS-III APOGEE survey). We find [Fe/H] = -1.97 ± 0.13 dex for NGC 5466, and [Fe/H] = -2.06 ± 0.13 dex for NGC 5024, and the typical abundance pattern for globular clusters for the remaining elements, e.g., both show evidence for mixing in their light element abundance ratios (C, N), and AGB contributions in their heavy element abundances (Y, Ba, and Eu). These clusters were selected to examine chemical trends that may correlate them with the Sgr dwarf galaxy remnant, but at these low metallicities no obvious differences from the Galactic abundance pattern are found. Regardless, we compare our results from the optical and infrared analyses to find that oxygen and silicon abundances determined from the infrared spectral lines are in better agreement with the other alpha-element ratios and with smaller random errors.
We propose and apply two methods to estimate pupil plane phase discontinuities for two realistic scenarios on VLT and Keck. The methods use both Phase Diversity and a form of image sharpening. For the case of VLT, we simulate the 'low wind effect' (LWE) which is responsible for focal plane errors in the SPHERE system in low wind and good seeing conditions. We successfully estimate the simulated LWE using both methods, and show that they are complimentary to one another. We also demonstrate that single image Phase Diversity (also known as Phase Retrieval with diversity) is also capable of estimating the simulated LWE when using the natural de-focus on the SPHERE/DTTS imager. We demonstrate that Phase Diversity can estimate the LWE to within 30 nm RMS WFE, which is within the allowable tolerances to achieve a target SPHERE contrast of 10 −6 . Finally, we simulate 153 nm RMS of piston errors on the mirror segments of Keck and produce NIRC2 images subject to these effects. We show that a single, diverse image with 1.5 waves (PV) of focus can be used to estimate this error to within 29 nm RMS WFE, and a perfect correction of our estimation would increase the Strehl ratio of a NIRC2 image by 12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.