Trigonella foenum-graecum (fenugreek) seeds have been documented as a traditional plant treatment for diabetes. In the present study, the antidiabetic properties of a soluble dietary fibre (SDF) fraction of T. foenum-graecum were evaluated. Administration of SDF fraction (0·5 g/kg body weight) to normal, type 1 or type 2 diabetic rats significantly improved oral glucose tolerance. Total remaining unabsorbed sucrose in the gastrointestinal tract of non-diabetic and type 2 diabetic rats, following oral sucrose loading (2·5 g/kg body weight) was significantly increased by T. foenum-graecum (0·5 g/kg body weight). The SDF fraction suppressed the elevation of blood glucose after oral sucrose ingestion in both non-diabetic and type 2 diabetic rats. Intestinal disaccharidase activity and glucose absorption were decreased and gastrointestinal motility increased by the SDF fraction. Daily oral administration of SDF to type 2 diabetic rats for 28 d decreased serum glucose, increased liver glycogen content and enhanced total antioxidant status. Serum insulin and insulin secretion were not affected by the SDF fraction. Glucose transport in 3T3-L1 adipocytes and insulin action were increased by T. foenum-graecum. The present findings indicate that the SDF fraction of T. foenum-graecum seeds exerts antidiabetic effects mediated through inhibition of carbohydrate digestion and absorption, and enhancement of peripheral insulin action.
Studies on the antidiabetic effects of Mangifera indica stem-barks and leaves on nondiabetic, type 1 and type 2 diabetic model rats. Bangladesh J Pharmacol. 2009; 4: 110-14.
AbstractMangifera indica Linn, locally known as mango tree has been claimed to possess antidiabetic properties by many investigators. The present study was undertaken to screen the hypoglycemic and antihyperglycemic activity of both ethanol and water extracts of leaves and stem-barks of M. indica in nondiabetic and diabetic model rats in different prandial state. The results showed that all of the extracts had significant antihyperglycemic effect in type 2 diabetic model rats when fed simultaneously with glucose load (p<0.05-0.01; p<0.005-0.001). Moreover, the ethanol extract of stem-barks showed significant antihyperglycemic effect when the extract was fed 30 min prior to the glucose load (p<0.01). Investigations were carried out to evaluate the effect of M. indica on glucose absorption using a rat intestinal preparation in situ. The ethanol extracts of stem-barks reduced glucose absorption gradually This work is licensed under a Creative Commons Attribution 3.0 License. You are free to copy, distribute and perform the work. You must attribute the work in the manner specified by the author or licensor.
Plantago ovata has been reported to reduce postprandial glucose concentrations in diabetic patients. In the present study, the efficacy and possible modes of action of hot-water extracts of husk of P. ovata were evaluated. The administration of P. ovata (0·5 g/kg body weight) significantly improved glucose tolerance in normal, type 1 and type 2 diabetic rat models. When the extract was administered orally with sucrose solution, it suppressed postprandial blood glucose and retarded small intestinal absorption without inducing the influx of sucrose into the large intestine. The extract significantly reduced glucose absorption in the gut during in situ perfusion of small intestine in non-diabetic rats. In 28 d chronic feeding studies in type 2 diabetic rat models, the extract reduced serum atherogenic lipids and NEFA but had no effect on plasma insulin and total antioxidant status. No effect of the extract was evident on intestinal disaccharidase activity. Furthermore, the extract did not stimulate insulin secretion in perfused rat pancreas, isolated rat islets or clonal b cells. Neither did the extract affect glucose transport in 3T3 adipocytes. In conclusion, aqueous extracts of P. ovata reduce hyperglycaemia in diabetes via inhibition of intestinal glucose absorption and enhancement of motility. These attributes indicate that P. ovata may be a useful source of active components to provide new opportunities for diabetes therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.