A key challenge for autonomous driving is safe trajectory planning in cluttered, urban environments with dynamic obstacles, such as pedestrians, bicyclists, and other vehicles. A reliable prediction of the future environment, including the behavior of dynamic agents, would allow planning algorithms to proactively generate a trajectory in response to a rapidly changing environment. We present a novel framework that predicts the future occupancy state of the local environment surrounding an autonomous agent by learning a motion model from occupancy grid data using a neural network. We take advantage of the temporal structure of the grid data by utilizing a convolutional long-short term memory network in the form of the PredNet architecture. This method is validated on the KITTI dataset and demonstrates higher accuracy and better predictive power than baseline methods. This work was supported by the Ford-Stanford Alliance. 1 M. Itkina and M. J. Kochenderfer are with the
Predicting the future occupancy state of an environment is important to enable informed decisions for autonomous vehicles. Common challenges in occupancy prediction include vanishing dynamic objects and blurred predictions, especially for long prediction horizons. In this work, we propose a double-prong neural network architecture to predict the spatiotemporal evolution of the environment occupancy state. One prong is dedicated to predicting how the static environment will be observed by the moving ego vehicle. The other prong predicts how the dynamic objects in the environment will move. Experiments conducted on the real-world Waymo Open Dataset indicate that the fused output of the two prongs is capable of retaining dynamic objects and reducing blurriness in the predictions for longer time horizons than baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.