ABSTRACT:Teaching nonscience majors topics in biotechnology through case studies is the focus of this research. Our Biotechnology, Environment, and Related Issues module, developed within the Science for All framework, is aimed at elevating the level of students' scientific and technological literacy and their higher order thinking skills. The research goal was to investigate nonscience major students' ability to use various thinking skills in analyzing environmental and moral conflicts presented through case studies in the Biotechnology Module. The research population consisted of about 200 nonscience majors in eight classes of grades 10 -12 from heterogeneous communities. We found a significant improvement in students' knowledge and understanding and higher order thinking skills at all academic levels. The scores that low academic level students achieved in the knowledge and understanding category were higher than their high academic level peers' scores. In the higher order thinking skills-question posing, argumentation, and system thinking-a significant difference in favor of the high academic level students was found. The gap that had existed between low and high academic level students narrowed. Most students reported that the biotechnological topics that they had studied were interesting and relevant. Based on these results, we advocate a curriculum that exposes students to scientific controversies through case studies with environmental and moral implications. Our research has shown that this approach is likely to contribute to developing scientific and technological literacy along with higher order thinking skills of nonscience majors.
This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.