The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which BPASS incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest BPASS model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including wellconstrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.
In industrial environments, over several decades, Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs) have served to improve efficiencies of intralogistics and material handling tasks. However, for system integrators, the choice and effective deployment of improved, suitable and reliable communication and control technologies for these unmanned vehicles remains a very challenging task. Specifics of communication for AGVs and AMRs imposes stringent performance requirements on latency and reliability of communication links which many existing wireless technologies struggle to satisfy. In this paper, a review of latest AGVs and AMRs research results in the past decade is presented. The review encompasses results from different past and present research domains of AGVs. In addition, performance requirements of communication networks in terms of their latencies and reliabilities when they are deployed for AGVs and AMRs coordination, control and fleet management in smart manufacturing environments are discussed. Integration challenges and limitations of present state-of-the-art AGV and AMR technologies when those technologies are used for facilitating AGV-based smart manufacturing and factory of the future applications are also thoroughly discussed. The paper also present a thorough discussion of areas in need of further research regarding the application of 5G networks for AGVs and AMRs fleet management in smart manufacturing environments. In addition, novel integration ideas by which tactile Internet, 5G network slicing and virtual reality applications can be used to facilitate AGV and AMR based factory of the future (FoF) and smart manufacturing applications were motivated.INDEX TERMS Intelligent factory, factory of the future, 5G, smart manufacturing, industry 4.0, autonomous industrial equipment, AGV, AMR, tactile Internet, virtual reality, lean manufacturing.
We present the discovery of eclipses in the X-ray light curves of the X-ray binary Swift J1858.6–0814. From these, we find an orbital period of $P=76841.3_{-1.4}^{+1.3}$ s (≈21.3 hours) and an eclipse duration of $t_{\rm ec}=4098_{-18}^{+17}$ s (≈1.14 hours). We also find several absorption dips during the pre-eclipse phase. From the eclipse duration to orbital period ratio, the inclination of the binary orbit is constrained to i > 70○. The most likely range for the companion mass suggests that the inclination is likely to be closer to this value than 90○. The eclipses are also consistent with earlier data, in which strong variability (‘flares’) and the long orbital period prevent clear detection of the period or eclipses. We also find that the bright flares occurred preferentially in the post-eclipse phase of the orbit, likely due to increased thickness at the disc-accretion stream interface preventing flares being visible during the pre-eclipse phase. This supports the notion that variable obscuration is responsible for the unusually strong variability in Swift J1858.6–0814.
The brightest Fast Blue Optical Transients (FBOTs) are mysterious extragalactic explosions that may represent a new class of astrophysical phenom-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.