<div>This paper builds upon the theoretical foundations of the Accountable explainable Artificial Intelligence (AXAI) capability framework presented in part one of this paper. This part demonstrates the incorporation of the AXAI capability in the real time Affective State Assessment Module (ASAM) of a robotic system. The paper argues that adhering to the extreme Programming (XP) practices would help in understanding user behavior while systematically incorporating the AXAI capability in AI systems. Issues pertaining to identification of ethical, technical, functional, and domain-specific system requirements were resolved using an appropriate software design process, thus establishing confidence in the system. The presented ASAM synthesizes discrete and continuous models of affective state expressions and classifies them in real-time. Input, processed and output data are continuously shared with users via a graphical user interface (GUI) for providing reasons behind decisions. The GUI also disseminates information about local reasoning, data handling and decision-making. We hope this work will initiate further investigations on selection of suitable software design practices for incorporating the AXAI capability in AI systems, enhancing AI system acceptability and utility and, establishing a chain of responsibility.</div>
<div>This paper builds upon the theoretical foundations of the Accountable explainable Artificial Intelligence (AXAI) capability framework presented in part one of this paper. This part demonstrates the incorporation of the AXAI capability in the real time Affective State Assessment Module (ASAM) of a robotic system. The paper argues that adhering to the extreme Programming (XP) practices would help in understanding user behavior while systematically incorporating the AXAI capability in AI systems. Issues pertaining to identification of ethical, technical, functional, and domain-specific system requirements were resolved using an appropriate software design process, thus establishing confidence in the system. The presented ASAM synthesizes discrete and continuous models of affective state expressions and classifies them in real-time. Input, processed and output data are continuously shared with users via a graphical user interface (GUI) for providing reasons behind decisions. The GUI also disseminates information about local reasoning, data handling and decision-making. We hope this work will initiate further investigations on selection of suitable software design practices for incorporating the AXAI capability in AI systems, enhancing AI system acceptability and utility and, establishing a chain of responsibility.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.