Falls are the most common and expensive medical complication in stroke survivors. There is remarkably little information about what factors lead to a fall in stroke survivors. With few exceptions, the falls literature in stroke has focused on relating metrics of static balance and impairment to fall outcomes in the acute care setting or in community. While informative, these studies provide little information about what specific impairments in a stroke-survivor’s response to dynamic balance challenges lead to a fall. We identified the key kinematic characteristics of stroke survivors’ stepping responses following a balance disturbance that are associated with a fall following dynamic balance challenges. Stroke survivors were exposed to posteriorly-directed translations of a treadmill belt that elicited a stepping response. Kinematics were compared between successful and failed recovery attempts (i.e. a fall). We found that the ability to arrest and reverse trunk flexion and the ability to perform an appropriate initial compensatory step were the most critical response contributors to a successful recovery. We also identified 2 compensatory strategies utilized by stroke survivors to avoid a fall. Despite significant post-stroke functional impairments, the biomechanical causes of trip-related falls by stroke survivors appear to be similar to those of unimpaired older adults and lower extremity amputees. However, compensatory strategies (pivot, hopping) were observed.
Background-Individuals with stroke are at significant risk of falling. Trip-specific training is a targeted training approach that has been shown to reduce falls in older adults and amputees by enhancing the compensatory stepping response required to prevent a fall. Still, individuals with stroke have unique deficits (e.g. spasticity) which draws into question if this type of training will be effective for this population. Objective-Evaluate if a single session of trip-specific training can modify the compensatory stepping response (trunk movement, step length/duration, reaction time) of individuals with chronic stroke. Methods-Sixteen individuals with unilateral chronic stroke participated in a single session of trip-specific training consisting of 15 treadmill perturbations. A falls assessment consisting of 3 perturbations was completed before and after training. Recovery step kinematics measured during the pre-and post-test were compared using a repeated measures design. Furthermore, Fallers (those who experienced at least one fall during the pre-or post-test) were compared to Non-fallers. Results-Trip-specific training decreased trunk movement post perturbation. Specifically following training, Trunk flexion was 48 and 19 percent smaller on the small and medium perturbations at the end of the first compensatory step. Fallers (9 out of 16 subjects) post-training
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.