Patient deaths resulting from cardiovascular diseases are increasing across the globe, posing the greatest risk to patients in developed countries. Myocardial infarction, as a result of inadequate blood flow to the myocardium, results in irreversible loss of cardiomyocytes which can lead to heart failure. A sequela of myocardial infarction is scar formation that can alter the normal myocardial architecture and result in arrhythmias. Over the past decade, a myriad of tissue engineering approaches has been developed to fabricate engineered scaffolds for repairing cardiac tissue. This paper highlights the recent application of electrically conductive nanomaterials (carbon and gold-based nanomaterials, electroactive polymers) to the development of scaffolds for cardiac tissue engineering. Moreover, this work summarizes the effects of these nanomaterials on cardiac cell behavior such as proliferation and migration, as well as cardiomyogenic differentiation in stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.