Abstract. Extraction of blood vessels in retinal images is an important step for computer-aided diagnosis of ophthalmic pathologies. We propose an approach for blood vessel tracking and diameter estimation. We hypothesize that the curvature and the diameter of blood vessels are Gaussian processes (GPs). Local Radon transform, which is robust against noise, is subsequently used to compute the features and train the GPs. By learning the kernelized covariance matrix from training data, vessel direction and its diameter are estimated. In order to detect bifurcations, multiple GPs are used and the difference between their corresponding predicted directions is quantified. The combination of Radon features and GP results in a good performance in the presence of noise. The proposed method successfully deals with typically difficult cases such as bifurcations and central arterial reflex, and also tracks thin vessels with high accuracy. Experiments are conducted on the publicly available DRIVE, STARE, CHASEDB1, and high-resolution fundus databases evaluating sensitivity, specificity, and Matthew's correlation coefficient (MCC). Experimental results on these datasets show that the proposed method reaches an average sensitivity of 75.67%, specificity of 97.46%, and MCC of 72.18% which is comparable to the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.