We investigate the use of quantum scissors, as candidates for non-deterministic amplifiers, in continuousvariable quantum key distribution. Such devices rely on single-photon sources for their operation and as such, they do not necessarily preserve the Guassianity of the channel. Using exact analytical modeling for the system components, we bound the secret key generation rate for a protocol that uses quantum scissors. We find that, for certain non-zero values of excess noise, such a protocol can reach longer distances than the counterpart with no amplification. This sheds light into the prospect of using quantum scissors as an ingredient in continuousvariable quantum repeaters.
It is known that quantum scissors, as non-deterministic amplifiers, can enhance the performance of Gaussianmodulated continuous-variable quantum key distribution (CV-QKD) in noisy and long-distance regimes of operation. Here, we extend this result to a non-Gaussian CV-QKD protocol with discrete modulation. We show that, by using a proper setting, the use of quantum scissors in the receiver of such discrete-modulation CV-QKD protocols would allow us to achieve positive secret key rates at high loss and high excess noise regimes of operation, which would have been otherwise impossible. This also keeps the prospect of running discrete-modulation CV-QKD over CV quantum repeaters alive.
In present-day quantum communications, one of the main problems is the lack of a quantum repeater design that can simultaneously secure high rates and long distances. Recent literature has established the end-to-end capacities that are achievable by the most general protocols for quantum and private communication within a quantum network, encompassing the case of a quantum repeater chain. However, whether or not a physical design exists to approach such capacities remains a challenging objective. Driven by this motivation, in this work, we put forward a design for continuous-variable quantum repeaters and show that it can actually achieve the feat. We also show that even in a noisy regime our rates surpass the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound. Our repeater setup is developed upon using noiseless linear amplifiers, quantum memories, and continuous-variable Bell measurements. We, furthermore, propose a non-ideal model for continuous-variable quantum memories that we make use of in our design. We then show that potential quantum communications rates would deviate from the theoretical capacities, as one would expect, if the quantum link is too noisy and/or low-quality quantum memories and amplifiers are employed.
Abstract-We examine the applicability of wireless indoor quantum key distribution (QKD) in hybrid quantum-classical networks. We propose practical configurations that would enable wireless access to such networks. The proposed scenarios would allow an indoor wireless user, equipped with a QKD-enabled mobile device, to communicate securely with a remote party on the other end of the access network. QKD signals, sent through wireless indoor channels, are combined with classical ones and sent over the same fiber link to the remote user. Dense wavelength-division multiplexing would enable the simultaneous transmission of quantum and classical signals over the same fiber. We consider the adverse effects of the background noise induced by Raman scattered light on the QKD receivers due to such an integration. In addition, we consider the loss and the background noise that arise from indoor environments. Decoy-state BB84 and measurement-device-independent protocols are employed for the secret key rate analysis.Index Terms-Quantum key distribution (QKD), BB84, decoy states, measurement-device-independent QKD (MDI-QKD), optical wireless communications (OWC).
Since the invention of the laser in the 60s, one of the most fundamental communication channels has been the free-space optical channel. For this type of channel, a number of effects generally need to be considered, including diffraction, refraction, atmospheric extinction, pointing errors and, most importantly, turbulence. Because of all these adverse features, the free-space optical (FSO) channel is more difficult to study than a stable fiber-based link. For the same reasons, only recently it has been possible to establish the ultimate performances achievable in quantum communications via free-space channels, together with practical rates for continuous variable (CV) quantum key distribution (QKD). Differently from previous literature, mainly focused on the regime of weak turbulence, this work considers the FSO channel in the more challenging regime of moderate-to-strong turbulence, where effects of beam widening and breaking are more important than beam wandering. This regime may occur in long-distance free-space links on the ground, in uplink to high-altitude platform systems (HAPS) and, more interestingly, in downlink from near-horizon satellites. In such a regime we rigorously investigate ultimate limits for quantum communications and show that composable keys can be extracted using CV-QKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.