High-strength concrete (HSC) is highly applicable to the construction of heavy structures. However, shear strength (Ss) determination of HSC is a crucial concern for structure designers and decision makers. The current research proposes the novel models based on the combination of adaptive neuro-fuzzy inference system (ANFIS) with several meta-heuristic optimization algorithms, including ant colony optimizer (ACO), differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO), to predict the Ss of HSC slender beam. The proposed models were constructed using several input combinations incorporating several related dimensional parameters such as effective depth of beam (d), shear span (a), maximum size of aggregate (ag), compressive strength of concrete (fc), and percentage of tension reinforcement (ρ). To assess the impact of the non-homogeneity of the dataset on the prediction result accuracy, two possible modeling scenarios, (i) non-processed (initial) dataset (NP) and (ii) pre-processed dataset (PP), are inspected by several performance indices. The modeling results demonstrated that ANFIS-PSO hybrid model attained the best prediction accuracy over the other models and for the pre-processed input parameters. Several uncertainty analyses were examined (i.e., model, variables, and data), and results indicated predicting the HSC shear strength was more sensitive to the model structure uncertainty than the input parameters.
The application of soft computing (SC) models for predicting environmental variables is widely gaining popularity, because of their capability to describe complex non-linear processes. The sea surface temperature (SST) is a key quantity in the analysis of sea and ocean systems, due to its relation with water quality, organisms, and hydrological events such as droughts and floods. This paper provides a comprehensive review of the SC model applications for estimating SST over the last two decades. Types of model (based on artificial neural networks, fuzzy logic, or other SC techniques), input variables, data sources, and performance indices are discussed. Existing trends of research in this field are identified, and possible directions for future investigation are suggested.
Sediment transport in the ejector is highly stochastic and non-linear in nature, and its accurate estimation is a complex and challenging mission. This study attempts to investigate the sediment removal estimation of sediment ejector using newly developed hybrid data-intelligence models. The proposed models are based on the hybridization of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristic algorithms, namely, particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), and ant colony optimization (ACO). The proposed models are constructed with various related input variables such as sediment concentration, flow depth, velocity, sediment size, Froude number, extraction ratio, number of tunnels and sub-tunnels, and flow depth at upstream of the sediment ejector. The estimation capacity of the developed hybrid models is assessed using several statistical evaluation indices. The modeling results obtained for the studied ejector sediment removal estimation demonstrated an optimistic finding. Among the developed hybrid models, ANFIS-PSO model exhibited the best predictability potential with maximum correlation coefficient values CC Train = 0.915 and CC Test = 0.916.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.