With the aim of contributing to the fight against the coronavirus disease 2019 (COVID-19), numerous strategies have been proposed. While developing an effective vaccine can take months up to years, detection of infected patients seems like one of the best ideas for controlling the situation. The role of biosensors in containing highly pathogenic viruses, saving lives and economy is evident. A new competitive numerical platform specifically for designing microfluidic-integrated biosensors is developed and presented in this work. Properties of the biosensor, sample, buffer fluid and even the microfluidic channel can be modified in this model. This feature provides the scientific community with the ability to design a specific biosensor for requested point-of-care (POC) applications. First, the validation of the presented numerical platform against experimental data and then results and discussion, highlighting the important role of the design parameters on the performance of the biosensor is presented. For the latter, the baseline case has been set on the previous studies on the biosensors suitable for SARS-CoV, which has the highest similarity to the 2019 nCoV. Subsequently, the effects of concentration of the targeted molecules in the sample, installation position and properties of the biosensor on its performance were investigated in 11 case studies. The presented numerical framework provides an insight into understanding of the virus reaction in the design process of the biosensor and enhances our preparation for any future outbreaks. Furthermore, the integration of biosensors with different devices for accelerating the process of defeating the pandemic is proposed.
One of the most common ways used to produce multilayer ceramics is tape casting. In this process, the wet tape thickness is one of the single most determining parameters affecting the final properties of the product, and it is therefore of great interest to be able to control it. In the present work, the flow in the doctor blade region of a slurry containing (La 0?85 Sr 0?15 ) 0?9 MnO 3 (LSM) material is described with a simple quasi-steady momentum equation in combination with an Ostwald-de Waele power law constitutive equation. Based on rheometer experiments, the constants in the Ostwald-de Waele power law are identified for the considered LSM material and applied in the analytical solution for the tape thickness. This solution is then used for different values of substrate velocity and doctor blade height and compared with experimental findings of the wet tape thickness, and good agreement is found.
Numerical modelling is increasingly supporting the analysis and optimization of manufacturing processes in the production industry. Even if being mostly applied to multistep processes, single process steps may be so complex by nature that the needed models to describe them must include multiphysics. On the other hand, processes which inherently may seem multiphysical by nature might sometimes be modelled by considerably simpler models if the problem at hand can be somehow adequately simplified. In the present article, examples of this will be presented. The cases are chosen with the aim of showing the diversity in the field of modelling of manufacturing processes as regards process, materials, generic disciplines as well as length scales: (1) modelling of tape casting for thin ceramic layers, (2) modelling the flow of polymers in extrusion, (3) modelling the deformation process of flexible stamps for nanoimprint lithography, (4) modelling manufacturing of composite parts and (5) modelling the selective laser melting process. For all five examples, the emphasis is on modelling results as well as describing the models in brief mathematical details. Alongside with relevant references to the original work, proper comparison with experiments is given in some examples for model validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.