An innovative optimization technique is presented for the design of composite laminated plates subjected to in-plane loads. A list of quasi-homogeneous laminates that can be used as angle-ply materials is proposed as a comprehensive solution for optimum lay-up. Two optimization procedures are performed: Dimensioning of the flexural stiffness and the elastic modulus, which provides the optimal orientations for the layers and offer highest in-plane resistance to composite laminated structures. The polar formalism for plane anisotropy is used to represent the flexural stiffness and elastic modulus tensors. Numerical examples are resolved for two materials with different elastic moduli.
In this study, a finite element based formulation is developed for analyzing the buckling and post-buckling of composite laminates subjected to mechanical and hygrothermal loads using Modified Hyperbolic Shear Deformation Theory (MHSDT). The changes in the critical buckling load are presented for different lamination schemes, thicknesses, material properties and plate aspect ratios. In addition, post buckling analysis is performed for a composite plate subjected to uniform in-plane thermal and moisture induced loadings by using MHSDT. Matlab software has been used for programming the analysis. The results obtained by Matlab codes are in a satisfactory consistence compared to the references. Thus, the developed MHSDT has been validated for buckling and post buckling analysis of laminated plates in hygrothermal environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.