The prediction of water quality parameters plays an important role in water resources and environmental systems. The use of electrical conductivity (EC) as a water quality indicator is one of the important parameters for estimating the amount of mineralization. This study describes the application of artificial neural network (ANN) and wavelet-neural network hybrid (WANN) models to predict the monthly EC of the Asi River at the Demirköprü gauging station, Turkey. In the proposed hybrid WANN model, the discrete wavelet transform (DWT) was linked to the ANN model for EC prediction using a feed-forward back propagation (FFBP) training algorithm. For this purpose, the original time series of monthly EC and discharge (Q) values were decomposed to several sub-time series by DWT, and these sub-time series were then presented to the ANN model as an input dataset to predict the monthly EC. Comparing the values predicted by the models indicated that the performance of the proposed WANN model was better than the conventional ANN model. The correlation of determination (R (2)) were 0.949 and 0.381 for the WANN and ANN models, respectively. The results indicate that the peak EC values predicted by the WANN model are closer to the observed values, and this model simulates the hysteresis phenomena at an acceptable level as well.
Prediction of dissolved oxygen (DO) plays an important role in water resources especially in surface waters such as rivers. The oxygen affects a vast number of other water indicators. In this study, the artificial neural network (ANN) and a hybrid wavelet-ANN (WANN) models were considered to predict thirty minutes dissolved oxygen in the River Calder at the Methley Bridge Station was located in the UK. For the proposed WANN model, the discrete wavelet transform (DWT) was linked to the ANN model for DO prediction. To achieve this aim, the original time series of thirty minutes DO and temperature (T) were decomposed in several sub-time series by DWT, and these new sub-series were imposed to the ANN model. The results were compared with single ANN model. The comparisons were done by some of the widely used relevant physical statistic indices. The Nash-Sutcliffe coefficient values were 0.998 and 0.740 for the WANN and ANN models, respectively. The model computed values of DO by the WANN model were in close agreement with respective measured values in the river water. Elimination noise by DWT model during pre-processing data is one of the abilities of the WANN model to better prediction. Since the results indicate closer approximation of the peak DO values by the WANN model, this model could be used for the simulation of cumulative DO data prediction in thirty minutes ahead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.