Deflectometry as a technique to assess reflective surfaces has now existed for some 40 years. Its different aspects and variations have been studied in multiple theses and research articles; reviews are available for certain subtopics. Still a field of active development with many unsolved problems, deflectometry now encompasses a large variety of application domains, hardware setup types, and processing workflows for different purposes, and spans a range from qualitative defect inspection of large vehicles to precision measurements of microscopic optics. Over these years, many exciting developments have accumulated in the underlying theory, in the systems design, and in the implementation specifics. This diversity of topics is difficult to grasp for experts and non-experts alike and may present an obstacle to a wider acceptance of deflectometry as a useful tool for research and industrial applications. This paper presents an attempt to summarize the status of deflectometry and to map relations between its notable branches. Its aim is to provide a communication basis for experienced practitioners and also to offer a convenient entry point for those interested in learning about the method. The list of references introduces some prominent trends and established research groups in order to facilitate further self-directed exploration.
In this paper we assess the impact of different error sources on the deflectometric measurement. We provide an overview of previous work in this field and fill the gaps to provide a unified measurement model. The focus is on the parameters of a deflectometric setup with the objective to give practice-oriented guidelines for optimizing the deflectometric data acquisition. We will differentiate between systematic error sources which can be anticipated and compensated for and errors which are intrinsic to the deflectometric measurement method itself. In the later case possible trade-offs between parameters are highlighted to enable the optimization of a setup to a specific application
Deflectometry as a technical approach to assessing reflective surfaces has now existed for almost 40 years. Different aspects and variations of the method have been studied in multiple theses and research articles, and reviews are also becoming available for certain subtopics. Still a field of active development with many unsolved problems, deflectometry now encompasses a large variety of application domains, hardware setup types, and processing workflows designed for different purposes, and spans a range from qualitative defect inspection of large vehicles to precision measurements of microscopic optics. Over these years, many exciting developments have accumulated in the underlying theory, in the systems design, and in the implementation specifics. This diversity of topics is difficult to grasp for experts and nonexperts alike and may present an obstacle to a wider acceptance of deflectometry as a useful tool in other research fields and in the industry.This paper presents an attempt to summarize the status of deflectometry, and to map relations between its notable "spin-off" branches. The intention of the paper is to provide a common communication basis for practitioners and at the same time to offer a convenient entry point for those interested in learning and using the method. The list of references is extensive but definitely not exhaustive, introducing some prominent trends and established research groups in order to facilitate further selfdirected exploration by the reader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.