A set of formulas for the dynamic stiffness of a pile (spring and dashpot coefficients) to use in inertial interaction analysis is proposed, utilising elastodynamic solutions. The method is based on solving a Lagrangian system of coupled equations for the pile and the soil motions for a range of vibration frequencies and also by considering the vertical, radial and angular stresses on the pile–soil interface. The solution extensively uses Bessel functions of the second kind and results are compared with finite-element models and field pile load tests. A dimensionless frequency related to the well-known active length of pile is proposed to separate inertial and kinematic interactions. A formula is also proposed for estimation of the active length of a pile in a two-layered soil. A specific depth is introduced beyond which soil layering does not have any appreciable effects on dynamic stiffness. It is commonly (rather arbitrarily) assumed that the first natural frequency of soil strata differentiates radiation (geometric) damping from hysteretic (material) damping for both types of interactions of the pile–soil system. In contrast, this paper proposes a new formulation based on relative pile–soil stiffness and frequency of the pile head loading to differentiate these two classes of damping behaviour. The application of the formulation is shown through an example
Collapse of Showa Bridge during the 1964 Niigata earthquake has been, throughout the years, an iconic case study for demonstrating the devastating effects of liquefaction. Inertial forces during the initial shock (within the first 7seconds of the earthquake) or lateral spreading of the surrounding ground (which started at 83 seconds after the start of the earthquake) cannot explain the failure of Showa Bridge as the bridge failed at about 70seconds following the main shock and before the lateral spreading of the ground started. In this study, quantitative analysis is carried out for the various failure mechanisms that may have contributed to the failure. The study shows that at about 70 seconds after the onset of the earthquake, the increased natural period of the bridge (due to the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.