The triboelectric nanogenerator (TENG) is a promising technology for mechanical energy harvesting. TENG has proven to be an excellent option for power generation but typically TENGs output power drops significantly in humid environments. In this work, the effect of electrode’s material on power output, considering smooth and nanostructured porous structures with various surface hydrophobicity, is investigated under various humidity conditions. A vertical contact-separation mode TENG is experimentally and numerically studied for four surface morphologies of Ti foil, TiO2 thin film, TiO2 nanoparticulated film, and TiO2 nanotubular electrodes. The results show that the TENG electrical output in the flat structures such as Ti foil and TiO2 thin film at 50% RH is reduced to 50% of its initial state, while in the nanoporous structures such as nanoparticle and nanotube arrays, this is observed at RH above 95%. The results show that the use of porous nanostructures in TENG due to their high surface-to-volume, and that the process of water adsorption on the pore leads to better performance than the flat surface in humid environments. Based on our study, employing nanoporous layers is vital for nanogenerators either for power generation or active sensor applications at high humidity conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.