Abstract-Automatic image annotation refers to create text labels in accordance with images' context automatically. Although, numerous studies have been conducted in this area for the past decade, existence of multiple labels and semantic gap between these labels and visual low-level features reduced its performance accuracy. In this paper, we suggested an annotation method, based on dense weighted regional graph. In this method, clustering areas was done by forming a dense regional graph of area classification based on strong fuzzy feature vector in images with great precision, as by weighting edges in the graph, less important areas are removed over time and thus semantic gap between low-level features of image and human interpretation of high-level concepts reduces much more. To evaluate the proposed method, COREL database, with 5,000 samples have been used. The results of the images in this database, show acceptable performance of the proposed method in comparison to other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.