Biocompatible, biodegradable, and injectable hydrogels are a novel and promising approach for bone regeneration. In this study, poly(caprolactone)–poly(ethylene glycol)–poly(caprolactone) (PCL-PEG-PCL), PCL-PEG-PCL-gelatin (Gel), PCL-PEG-PCL-Gel/nano-hydroxyapatite (nHA) injectable hydrogels were synthesized and evaluated in a mouse model of subcutaneous transplantation after 14 days. PCL-PEG-PCL-Gel and PCL-PEG-PCL-Gel/nHA hydrogels were fabricated with in situ precipitation method. Structure, intermolecular interaction, and the reaction between the PCL-PEG-PCL, Gel, and nHA were evaluated using a scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (H-NMR), and carbon nuclear magnetic resonance (C-NMR). Fourteen days after subcutaneous injection, the existence of an immune system reaction was investigated using Hematoxylin and Eosin (H&E) staining. Using immunofluorescence imaging, the number of CD68+ cells was determined in the periphery of the hydrogel. The CD8/CD4 lymphocyte ratio was also calculated in blood samples. We monitored the expression of CCL-2, BCL-2, IL-10, and CD31 using real-time PCR assay. The chemical evaluation revealed the successful integration of Gel and nHA to the PCL-PEG-PCL backbone. Histological examination showed the lack of inflammation at the site of injection. No toxicological effects were determined in hepatic and renal tissues. The addition of nHA to the PCL-PEG-PCL-Gel decreased biodegradation time. None of the hydrogels caused statistically significant differences in the number of CD68 cells (p > 0.05). The CD8/CD4 lymphocyte ratio remained unchanged in all groups (p > 0.05). Compared to the PCL-PEG-PCL group, the addition of nHA and Gel increased the expression of CCL-2, BCL-2, IL-10, and CD31 (p < 0.05). In conclusion, the current study showed that PCL-PEG-PCL-Gel/nHA hydrogels could be used in in vivo conditions without prominent toxic effects and inflammatory responses.
2021) Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as insitu forming hydrogel for the hard tissue engineering application, Artificial Cells,
The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.