In this investigation, polymethyl methacrylate (PMMA) was mixed with cyclic olefin copolymer (COC) because of its hardness, strength, and transparency properties. The results of thermal analysis through TGA and DTG showed that the thermal properties of the alloy are improved using 40% cyclic olefin copolymer. Kinetics of thermal degradation (pyrolysis) of polymers have been studied and analyzed and thermal pyrolysis of polymethyl methacrylate and cyclic olefin copolymer thermoplastic polymer was conducted. The computation of kinetic analysis is measured along with the different methods used to study the kinetics. The activation energy (E) of degradation of studied materials was estimated using Ozawa Flynn and Wall (OFW), Starink and Kissinger’s methods, and evaluation of three kinetic parameters taken appropriate kinetic model in terms of percent change for both types of polymers have been proposed, and finally, simulated curves were compared with the experimental curves. Both mechanisms of degradation for COC and PMMA under nitrogen atmosphere will reflect intramolecular transfer and random scission of the main chain.
Polymethyl methacrylate (PMMA) is a transparent thermoplastic with excellent optical properties, transparent surface, low moisture absorption, tensile and electrical resistance. In this study, the alloy was prepared through PMMA and cycloolefin copolymer (COC) due to some similar properties. The mechanical test showed that properties such as impact resistance, elongation, tensile, and flexural strength decreased by adding COC by up to 20% due to less incompatibility and miscibility, but mentioned properties improved by adding COC 40% due to sub-phase generation. The DSC and DMTA tests showed improvement in the thermal properties of alloys by adding 40% COC. SEM micrographs exhibited a softer surface and more phase elongation of the alloy. Finally, the sample was selected as the optimal sample in terms of mechanical properties irradiated by electron beam, and amplification results showed that a dose of 50 KGY increased the mechanical and thermal properties relatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.