BiVO4composited with TiO2(BVO-T) nanoparticles was sensitized by tetrakis(4-carboxy phenyl)porphyrin (TCPP) dye (BVO-T/P) to efficiently utilize visible light in the photodegradation reaction. To investigate the photoactivity of this catalyst, its photocatalytic efficiency was compared to the pure TiO2, pure BiVO4, and BiVO4composited with TiO2in the destruction of methyl orange in the visible light. Furthermore, the kinetic of the MO degradation as well as the stability of BVO-T/P photocatalyst was investigated.
Mesoporous vanadium doped titania (V-TiO2) photocatalyst was synthesized with the use of a new surfactant (Gemini) for the first time. In order to investigate the surfactant effect on the photocatalytic activity of catalysts, different surfactants containing Gemini, pluronic F127, pluronic P123, CTAB, Hexadecylamine and PEG 6000 were used in the preparation of mesoporous V-TiO2photocatalyst as a templating agent. The catalysts were characterized by FT-IR, XRD, SEM, EDX, nitrogen adsorption-desorption isotherm, and DRS. The nanosized V-TiO2 with Gemini surfactant (V-TiO2(G)) exhibited the highest visible light driven photocatalytic efficiency for degrading MO dye. The results showed that the surfactant type played an important role on the structure and photocatalytic activity of the samples.
For the first time antimony vanadium oxide-TiO2(SbV-T) nanocomposite was synthesized via sol-gel method to improve the photocatalytic efficiency of TiO2. The samples were characterized by FT-IR, XRD, SEM, EDX, and DRS. To investigate the photocatalytic activity of the samples, the photodegradation of methyl orange was carried out under visible light irradiation with pure TiO2, SbVO4, and SbVO4-TiO2nanocomposite. The SbV-T photocatalyst exhibited higher visible light driven photocatalytic efficiency to degrade MO dye. Furthermore the effect of SbVO4 and cationic vacancies in the photocatalytic activity of the SbV-T sample are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.