Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.
Background:Whooping cough was considered as one of the major causes of childhood morbidity and mortality worldwide. Resistant isolates of Bordetella pertussis to macrolides in some countries have been recently reported.Objectives:Recent reports on macrolide-resistant B. pertussis isolates and lack of evidence for such resistance in clinical isolates of the Iranian patients led the authors of the current study to study antibiotic susceptibility of the collected isolates in the country. Susceptibility of the B. pertussis isolates to three antibiotics was studied. Relatedness of the strains recovered in this research was also examined.Materials and Methods:The antibacterial activities of erythromycin, azithromycin, and clarithromycin antibiotics against the recovered isolates of 779 nasopharyngeal swabs were examined using MIC (Minimum Inhibitory Concentration) method. Relationship of the strains was characterized by Pulsed-field Gel Electrophoresis (PFGE).Results:Among the specimens, 11 cases (1.4%) were culture-positive. Among these isolates, only two isolates had high MIC values for erythromycin and clarithromycin. Pulsed-field gel electrophoresis analysis of the isolates revealed 6 PFGE profiles (A-F) among which three and two isolates had the same patterns in profiles A and B, respectively.Conclusions:Azithromycin can be a good drug of choice to treat patients infected by B. pertussis in Iran. Clonal relationship of the isolates showed that the same B. pertussis strains were isolated from different patients in Iran.
Background Pertussis remain a global health concern, especially in infants too young to initiate their vaccination. Effective vaccination and high coverage limit the circulation of the pathogen, yet duration of protection is limited and boosters are recommended during a lifetime. In Iran, boosters are given at 18 months and 6 years old using whole pertussis vaccines for which efficacy is not known, and pertussis surveillance is scant with only sporadic biological diagnosis. Burden of pertussis is not well understood and local data are needed. Methods Hospital-based prospective study implementing molecular laboratory testing in infants aged ≤6 months and presenting ≥5 days of cough associated to one pertussis-like symptom in Tehran. Household and non-household contact cases of positive infants were evaluated by comprehensive pertussis diagnosis (molecular testing and serology) regardless of clinical signs. Clinical evaluation and source of infection were described. Results A total of 247 infants and 130 contact cases were enrolled. Pertussis diagnosis result was obtained for 199 infants and 104 contact cases. Infant population was mostly < 3 months old (79.9%; 157/199) and unvaccinated (62.3%; 124/199), 20.1% (40/199) of them were confirmed having B. pertussis infection. Greater cough duration and lymphocyte counts were the only symptoms associated to positivity. Half of the contact cases (51.0%; 53/104) had a B. pertussis infection, median age was 31 years old. A proportion of 28.3% (15/53) positive contacts did not report any symptom. However, 67.9% (36/53) and 3.8% (2/53) of them reported cough at inclusion or during the study, including 20.8% (11/53) who started coughing ≥7 days before infant cough onset. Overall, only five samples were successfully cultured. Conclusion These data evidenced the significant prevalence of pertussis infection among paucy or poorly symptomatic contacts of infants with pertussis infection. Widespread usage of molecular testing should be implemented to identify B. pertussis infections.
Pertussis also known as whooping cough is a respiratory infection in humans particularly with severe symptoms in infants and usually caused by Bordetella pertussis. However, Bordetella parapertussis can also cause a similar clinical syndrome. During 2012 to 2015, from nasal swabs sent from different provinces to the pertussis reference laboratory of Pasture Institute of Iran for pertussis confirmation, seven B. parapertussis isolates were identified by bacterial culture, biochemical tests, and the presence of IS1001 insertion in the genome. The expression of pertactin (Prn) as one the major virulence factor for bacterial adhesion was investigated using western blot. Moreover, the genomic characteristic of one recently collected isolate, IRBP134, from a seven-month infant was investigated using Illumina NextSeq sequencing protocol. The results revealed the genome with G+C content 65% and genome size 4.7 Mbp. A total of 81 single nucleotide polymorphisms and 13 short insertions and deletions were found in the genome compared to the B. parapertussis 12822 as a reference genome showing ongoing evolutionary changes. A phylogeny relationship of IRBP134 was also investigated using global B. parapertussis available genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.