Telecare Medicine Information System (TMIS)'s security importance attracts a lot of attention these days. Whatever the security of TMIS improves, its application becomes wider. To address this requirement, recently, Li et al. proposed a new privacy-preserving RFID authentication protocol for TMIS. After that, Zhou et al. and also Benssalah et al. presented their scheme, which is not secure, and they presented their new authentication protocol and claim that their proposal can provide higher security for TMIS applications. In this stream, Zheng et al. proposed a novel authentication protocol with application in smart campus, including TMIS. In this paper, we present an efficient impersonation and replay attacks against Zheng et al. with the success probability of 1 and a desynchronization attack which is applicable against all of the rest three mentioned protocols with the success probability of 1 − 2 −n , where n is the protocols parameters length. After that, we proposed a new protocol despite these protocols can resist the attacks presented in this paper and also other active and passive attacks. Our proposed protocol's security is also done both informally and formally through the Scyther tool.
With the exponential increase of Internet of things (IoT) connected devices, important security risks are raised as any device could be used as an attack channel. This preoccupation is particularly important with devices featuring limited processing power and memory capabilities for security purposes. In line with this idea, Xu et al. (2018) proposed a lightweight Radio Frequency Identification (RFID) mutual authentication protocol based on Physical Unclonable Function (PUF)—ensuring mutual tag-reader verification and preventing clone attacks. While Xu et al. claim that their security protocol is efficient to protect RFID systems, we found it still vulnerable to a desynchronization attack and to a secret disclosure attack. Hence, guidelines for the improvements to the protocol are also suggested, for instance by changing the structure of the messages to avoid trivial attacks. In addition, we provide an explicit protocol for which our formal and informal security analysis have found no weaknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.