The modern world's reliance on fossil fuels has led to many issues, including rising fuel prices, pollution, climate change, and geopolitical unrest. While massive effort is required to deal with climate change comprehensively. Developing alternative energy sources and storage technologies is an important priority that can only be gained over time by reducing these issues. Because of this, recent years have seen an increase in the use of high-power and high-energy density storage systems, increasing the use of renewable energy sources or improving transportation efficiency contribute to climate change mitigation. Renewable energy resource deployment is associated with storage systems for reliable and continuous energy supply. It is essential to keep developing more efficient storage units to advance environmentally friendly technologies. Despite extensive research and development efforts, an essential upsurge in energy storage capability is required to meet future demand. In the next generation of energy storage devices, supercapacitors (SCs) seem an excellent candidate for wearable and portable electronics compared to the flexible lithium-ion batteries-based technologies. Electrochemically excellent carbon materials are required to protect the environment and develop renewable energy sources, but they are scarce. Depending on the desired carbon morphology, there are many different types of biomasses and biowaste materials from which to choose carbon precursors. The preparatory work and characterization of newly found and evolved bio-based carbon sources are discussed and summarized in this study. Precursor and nanostructure types are listed in alphabetical order. New carbon precursors with excellent electrochemical performance in energy storage applications are also discussed. Ultimately, a conclusion and an outlook from the application perspective are drawn.
The modern world's reliance on fossil fuels has led to many issues, including rising fuel prices, pollution, climate change, and geopolitical unrest. While massive effort is required to deal with climate change comprehensively. Developing alternative energy sources and storage technologies is an important priority that can only be gained over time by reducing these issues. Because of this, recent years have seen an increase in the use of high-power and high-energy density storage systems, increasing the use of renewable energy sources or improving transportation efficiency contribute to climate change mitigation. Renewable energy resource deployment is associated with storage systems for reliable and continuous energy supply. It is essential to keep developing more efficient storage units to advance environmentally friendly technologies. Despite extensive research and development efforts, an essential upsurge in energy storage capability is required to meet future demand. In the next generation of energy storage devices, supercapacitors (SCs) seem an excellent candidate for wearable and portable electronics compared to the flexible lithium-ion batteries-based technologies. Electrochemically excellent carbon materials are required to protect the environment and develop renewable energy sources, but they are scarce. Depending on the desired carbon morphology, there are many different types of biomasses and biowaste materials from which to choose carbon precursors. The preparatory work and characterization of newly found and evolved bio-based carbon sources are discussed and summarized in this study. Precursor and nanostructure types are listed in alphabetical order. New carbon precursors with excellent electrochemical performance in energy storage applications are also discussed. Ultimately, a conclusion and an outlook from the application perspective are drawn.
Capacitive coupling and inductive coupling are the two main factors in the occurrence of crosstalk fault in the communication bus. Among the various methods for reducing crosstalk fault, Crosstalk Avoidance Codes (CAC) codes are effective. However, with technology scaling, CACs are not able to prevent inductive effects. The proposed CACs methods are mainly based on capacitive coupling and do not consider inductive effects. To overcome this issue, a coding method is presented to avoid crosstalk fault called Joint Capacitive and Inductive CAC (JCI-CAC). The JCI-CAC coding reduces crosstalk faults by removing patterns of inductive coupling as ′ 11111 ′ and ′ 00000 ′ and capacitive coupling as ′ 10101 ′ and ′ 01010 ′ . The JCI-CAC offers a new method to generate a new numerical system for data encoding that has a low computational overhead so that it can be used for any desired width of the communication bus. The simulation results of the proposed JCI-CAC mechanism are investigated in different criteria of delay, power consumption and area overhead. The simulation results provide less power consumption in JCI-CAC than other recent approaches. There have also been improvements in overhead area and critical paths in JCI-CAC coding. The main novelty of this paper is to provide a new numerical system and a new coding algorithm with minimum cell area overhead and power consumption, considering inductance coupling in addition to capacitive coupling. Based on simulation results, power consumption of JCI-CAC in the 8-bit and 16-bit bus is reduced by up to 20% compared to SOTA and FPF (PS-Fibo, S2AP, Improved Fibo-CAC, Fibo-CAC) codings. Also, cell area overhead in JCI-CAC compared to SOTA coding in an 8-bit bus is reduced by 4.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.