The availability of mannuronan and mannuronan C-5 epimerases allows the production of a strictly alternating mannuronate-guluronate (MG) polymer and the MG-enrichment of natural alginates, providing a powerful tool for the analysis of the role of such sequences in the calcium-alginate gel network. In view of the calcium binding properties of long alternating sequences revealed by circular dichroism studies which leads eventually to the formation of stable hydrogels, their direct involvement in the gel network is here suggested. In particular, 1H NMR results obtained from a mixed alginate sample containing three polymeric species, G blocks, M blocks, and MG blocks, without chemical linkages between the block structures, indicate for the first time the formation of mixed junctions between G and MG blocks. This is supported by the analysis of the Young's modulus of hydrogels from natural and epimerized samples obtained at low calcium concentrations. Furthermore, the "zipping" of long alternating sequences in secondary MG/MG junctions is suggested to account for the shrinking (syneresis) of alginate gels in view of its dependence on the length of the MG blocks. As a consequence, a partial network collapse, macroscopically revealed by a decrease in the Young's modulus, occurred as the calcium concentration in the gel was increased. The effect of such "secondary" junctions on the viscoelastic properties of alginate gels was evaluated measuring their creep compliance under uniaxial compression. The experimental curves, fitted by a model composed of a Maxwell and a Voigt element in series, revealed an increase in the frictional forces between network chains with increasing length of the alternating sequences. This suggests the presence of an ion mediated mechanism preventing the shear of the gel.
The main functions of biological adhesives and sealants are to repair injured tissues, reinforce surgical wounds, or even replace common suturing techniques. In general surgery, adhesives must match several requirements taking into account clinical needs, biological effects, and material features; these requirements can be fulfilled by specific polymers. Natural or synthetic polymeric materials can be employed to generate three-dimensional networks that physically or chemically bind to the target tissues and act as hemostats, sealants, or adhesives. Among them, fibrin, gelatin, dextran, chitosan, cyanoacrylates, polyethylene glycol, and polyurethanes are the most important components of these interfaces; various aspects regarding their adhesion mechanisms, mechanical performance, and resistance to body fluids should be taken into account to choose the most suitable formulation for the target application. This review aims to describe the main adhesives and sealant materials for general surgery applications developed in the past decades and to highlight the most important aspects for the development of future formulations.
A new bioactive scaffold was prepared from a binary polysaccharide mixture composed of a polyanion (alginate) and a polycation (a lactose-modified chitosan, chitlac). Its potential use for articular chondrocytes encapsulation and cartilage reconstructive surgery applications has been studied. The hydrogel combines the ability of alginate to act as a 3D supporting structure with the capability of the second component (chitlac) to provide interactions with porcine articular chondrocytes. Physico-chemical characterization of the scaffold was accomplished by gel kinetics and compression measurements and demonstrated that alginate-chitlac mixture (AC-mixture) hydrogels exhibit better mechanical properties when compared with sole alginate hydrogels. Furthermore, biochemical and biological studies showed that these 3D scaffolds are able to maintain chondrocyte phenotype and particularly to significantly stimulate and promote chondrocyte growth and proliferation. In conclusion, the present study can be considered as a first step towards an engineered, biologically active scaffold for chondrocyte in vitro cultivation, expansion, and cell delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.