Background
Extent of tumor resection (EOTR) in glioblastoma surgery plays an important role in improving survival.
Objective
To analyze the efficacy, safety and reliability of fluid-attenuated inversion-recovery (FLAIR) magnetic resonance (MR) images used to guide glioblastoma resection (FLAIRectomy) and to volumetrically measure postoperative EOTR, which was correlated with clinical outcome and survival.
Methods
A total of 68 glioblastoma patients (29 males, mean age 65.8) were prospectively enrolled. Hyperintense areas on FLAIR images, surrounding gadolinium-enhancing tissue on T1-weighted MR images, were screened for signal changes suggesting tumor infiltration and evaluated for supramaximal resection. The surgical protocol included 5-aminolevulinic acid (5-ALA) fluorescence, neuromonitoring, and intraoperative imaging tools. 5-ALA fluorescence intensity was analyzed and matched with the different sites on navigated MR, both on postcontrast T1-weighted and FLAIR images. Volumetric evaluation of EOTR on T1-weighted and FLAIR sequences was compared.
Results
FLAIR MR volumetric evaluation documented larger tumor volume than that assessed on contrast-enhancing T1 MR (72.6 vs 54.9 cc); residual tumor was seen in 43 patients; postcontrast T1 MR volumetric analysis showed complete resection in 64 cases. O6-methylguanine-DNA methyltransferase promoter was methylated in 8/68 (11.7%) cases; wild type Isocytrate Dehydrogenase-1 (IDH-1) was found in 66/68 patients. Progression free survival and overall survival (PFS and OS) were 17.43 and 25.11 mo, respectively. Multiple regression analysis showed a significant correlation between EOTR based on FLAIR, PFS (R2 = 0.46), and OS (R2 = 0.68).
Conclusion
EOTR based on FLAIR and 5-ALA fluorescence is feasible. Safety of resection relies on the use of neuromonitoring and intraoperative multimodal imaging tools. FLAIR-based EOTR appears to be a stronger survival predictor compared to gadolinium-enhancing, T1-based resection.
ObjectiveAge is considered a negative prognostic factor for High Grade Gliomas (HGGs) and many neurosurgeons remain skeptical about the benefits of aggressive treatment. New surgical and technological improvements may allow extended safe resection, with lower level of post-operative complications. This opportunity opens the unsolved question about the most appropriate HGG treatment in elderly patients. The aim of this study is to analyze if HGG maximal safe resection guided by an intraoperative multimodal imaging protocol coupled with neuromonitoring is associated with differences in outcome in elderly patients versus younger ones.MethodsWe reviewed 100 patients, 53 (53%) males and 47 (47%) females, with median (IQR) age of 64 (57; 72) years. Eight patients were diagnosed with Anaplastic Astrocytoma (AA), 92 with Glioblastoma (GBM). Surgery was aimed to achieve safe maximal resection. An intraoperative multimodal imaging protocol, including neuronavigation, neurophysiological monitoring, 5-ALA fluorescence, 11C MET-PET, navigated i-US system and i-CT, was used, and its impact on EOTR and clinical outcome in elderly patients was analyzed. We divided patients in two groups according to their age: <65 and >65 years, and surgical and clinical results (EOTR, post-operative KPS, OS and PFS) were compared. Yet, to better understand age-related differences, the same patient cohort was also divided into <70 and >70 years and all the above data reanalyzed.ResultsIn the first cohort division, we did not found KPS difference over time and survival analysis did not show significant difference between the two groups (p = 0.36 for OS and p = 0.49 for PFS). Same results were obtained increasing the age cut-off for age up to 70 years (p = 0.52 for OS and p = 0.92 for PFS).ConclusionsOur data demonstrate that there is not statistically significant difference in post-operative EOTR, KPS, OS, and PFS between younger and elderly patients treated with extensive tumor resection aided by a intraoperative multimodal protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.