Hemispatial neglect is common after unilateral brain damage, particularly to perisylvian structures in the right-hemisphere (RH). In this disabling syndrome, behaviour and awareness are biased away from the contralesional side of space towards the ipsilesional side. Theoretical accounts of this in terms of hemispheric rivalry have speculated that the intact left-hemisphere (LH) may become hyper-excitable after a RH lesion, due to release of inhibition from the damaged hemisphere. We tested this directly using a novel twin-coil transcranial magnetic stimulation (TMS) approach to measure excitability within the intact LH of neglect patients. This involved applying a conditioning TMS pulse over left posterior parietal cortex (PPC), in order to test its effect on the amplitude of motor evoked potentials (MEPs) produced by a subsequent test pulse over left motor cortex (M1). Twelve RH stroke patients with neglect, an age-matched group of eight RH stroke patients without neglect, and 10 healthy controls were examined. We found that excitability of left PPC-M1 circuits was higher in neglect patients than the other groups, and related to the degree of neglect on clinical cancellation tests. A follow-up found that 1 Hz repetitive TMS over left PPC normalized this over-excitability, and also ameliorated visual neglect on an experimental measure with chimeric objects. Our results provide 'direct' evidence for pathological over-excitability of the LH in the neglect syndrome, as quantified by left PPC influences on left M1, with implications for possible treatment.
Time, space and numbers are closely linked in the physical world. However, the relativistic-like effects on time perception of spatial and magnitude factors remain poorly investigated. Here we wanted to investigate whether duration judgments of digit visual stimuli are biased depending on the side of space where the stimuli are presented and on the magnitude of the stimulus itself. Different groups of healthy subjects performed duration judgment tasks on various types of visual stimuli. In the first two experiments visual stimuli were constituted by digit pairs (1 and 9), presented in the centre of the screen or in the right and left space. In a third experiment visual stimuli were constituted by black circles. The duration of the reference stimulus was fixed at 300 ms. Subjects had to indicate the relative duration of the test stimulus compared with the reference one. The main results showed that, regardless of digit magnitude, duration of stimuli presented in the left hemispace is underestimated and that of stimuli presented in the right hemispace is overestimated. On the other hand, in midline position, duration judgments are affected by the numerical magnitude of the presented stimulus, with time underestimation of stimuli of low magnitude and time overestimation of stimuli of high magnitude. These results argue for the presence of strict interactions between space, time and magnitude representation on the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.