In recent years, research has been done on applying Recurrent Neural Networks (RNNs) as recommender systems. Results have been promising, especially in the session-based setting where RNNs have been shown to outperform state-of-the-art models. In many of these experiments, the RNN could potentially improve the recommendations by utilizing information about the user's past sessions, in addition to its own interactions in the current session. A problem for session-based recommendation, is how to produce accurate recommendations at the start of a session, before the system has learned much about the user's current interests. We propose a novel approach that extends a RNN recommender to be able to process the user's recent sessions, in order to improve recommendations. This is done by using a second RNN to learn from recent sessions, and predict the user's interest in the current session. By feeding this information to the original RNN, it is able to improve its recommendations. Our experiments on two different datasets show that the proposed approach can significantly improve recommendations throughout the sessions, compared to a single RNN working only on the current session. The proposed model especially improves recommendations at the start of sessions, and is therefore able to deal with the cold start problem within sessions.
This paper is concerned with paraphrase detection. The ability to detect similar sentences written in natural language is crucial for several applications, such as text mining, text summarization, plagiarism detection, authorship authentication and question answering. Given two sentences, the objective is to detect whether they are semantically identical. An important insight from this work is that existing paraphrase systems perform well when applied on clean texts, but they do not necessarily deliver good performance against noisy texts. Challenges with paraphrase detection on user generated short texts, such as Twitter, include language irregularity and noise. To cope with these challenges, we propose a novel deep neural network-based approach that relies on coarse-grained sentence modeling using a convolutional neural network and a long short-term memory model, combined with a specific fine-grained word-level similarity matching model. Our experimental results show that the proposed approach outperforms existing state-of-the-art approaches on user-generated noisy social media data, such as Twitter texts, and achieves highly competitive performance on a cleaner corpus.
The event detection problem, which is closely related to clustering, has gained a lot of attentions within event detection for textual documents. However, although image clustering is a problem that has been treated extensively in both Content-Based Image Retrieval (CBIR) and Text-Based Image Retrieval (TBIR) systems, event detection within image management is a relatively new area. Having this in mind, we propose a novel approach for event extraction and clustering of images, taking into account textual annotations, time and geographical positions. Our goal is to develop a clustering method based on the fact that an image may belong to an event cluster. Here, we stress the necessity of having an event clustering and cluster extraction algorithm that are both scalable and allow online applications. To achieve this, we extend a well-known clustering algorithm called Suffix Tree Clustering (STC), originally developed to cluster text documents using document snippets. The idea is that we consider an image along with its annotation as a document. Further, we extend it to also include time and geographical position so that we can capture the contextual information from each image during the clustering process. This has appeared to be particularly useful on images gathered from online photo-sharing applications such as Flickr. Hence, our STC-based approach is aimed at dealing with the challenges induced by capturing contextual information from Flickr images and extracting related events. We evaluate our algorithm using different annotated datasets mainly gathered from Flickr. As part of this evaluation we investigate the effects of using different parameters, such as This paper is an extended and revised version of IEEE ISM 2010 [34] Multimed Tools Appl time and space granularities, and compare these effects. In addition, we evaluate the performance of our algorithm with respect to mining events from image collections. Our experimental results clearly demonstrate the effectiveness of our STC-based algorithm in extracting and clustering events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.