Graphical Abstract Highlights d Lactate induces the expression of SLC5A12 on human CD4 + T cells in the inflamed tissue d Lactate promotes CD4 + T cell IL17 production via PKM2/ STAT3 signaling and FA synthesis d Lactate inhibits CD4 + T cell motility via increased FA synthesis and reduced glycolysis d SLC5A12 blockade ameliorates the disease severity in a murine model of arthritis
Inflammation and lipid accumulation are two basic hallmarks of atherosclerosis as a chronic disease. Inflammation not only is a local response but can also be considered as a systemic process followed by an elevation of inflammatory mediators. Monocytes are a major source of proinflammatory species during atherogenesis. In atherosclerosis, modified low-density lipoproteins (LDLs) are removed by macrophages; these are recruited in the vessel wall, inducing the release of inflammatory cytokines in inflamed tissue. Hence, inflammatory cholesterol ester-loaded plaque is generated. High-density lipoprotein-cholesterol (HDL-C) exhibits antiatherosclerotic effects by neutralizing the proinflammatory and pro-oxidant effects of monocytes via inhibiting the migration of macrophages and LDL oxidation in addition to the efflux of cholesterol from these cells. Furthermore, HDL plays a role in suppressing the activation of monocytes and proliferation-differentiation of monocyte progenitor cells. Thus, accumulation of monocytes and reduction of HDL-C may participate in atherosclerosis and cardiovascular diseases (CVD). Given that the relationship between the high number of monocytes and low HDL-C levels has been reported in inflammatory disorders, this review focused on understanding whether the monocyte-to-HDL ratio could be a convenient marker to predict atherosclerosis development and progression, hallmarks of CV events, instead of the individual monocyte count or HDL-C level.
PCSK9 critically controls LDLR expression in pancreas perhaps contributing to the maintenance of a proper physiological balance to limit cholesterol overload in beta cells. This effect is independent of circulating PCSK9 and is probably related to locally produced PCSK9.
Intraplaque release of inflammatory cytokines from macrophages is implicated in atherogenesis by inducing the proliferation and migration of media smooth muscle cells (SMCs). PCSK9 is present and released by SMCs within the atherosclerotic plaque but its function is still unknown. In the present study, we tested the hypothesis that PCSK9 could elicit a pro-inflammatory effect on macrophages. THP-1-derived macrophages and human primary macrophages were exposed to different concentrations (0.250 ÷ 2.5 µg/ml) of human recombinant PCSK9 (hPCSK9). After 24 h incubation with 2.5 µg/ml PCSK9, a significant induction of IL-1β, IL-6, TNF-α, CXCL2, and MCP1 mRNA, were observed in both cell types. Co-culture of THP-1 macrophages with HepG2 overexpressing hPCSK9 also showed the induction of TNF-α (2.4 ± 0.5 fold) and IL-1β (8.6 ± 1.8 fold) mRNA in macrophages. The effect of hPCSK9 on TNF-α mRNA in murine LDLR−/− bone marrow macrophages (BMM) was significantly impaired as compared to wild-type BMM (4.3 ± 1.6 fold vs 31.1 ± 6.1 fold for LDLR−/− and LDLR+/+, respectively). Finally, a positive correlation between PCSK9 and TNF-α plasma levels of healthy adult subjects (males 533, females 537) was observed (B = 8.73, 95%CI 7.54 ÷ 9.93, p < 0.001). Taken together, the present study provides evidence of a pro-inflammatory action of PCSK9 on macrophages, mainly dependent by the LDLR.
Increased iron stores associated with elevated levels of the iron hormone hepcidin are a frequent feature of the metabolic syndrome. The aim of this study was to assess the effect of dietary iron supplementation on insulin resistance and the role of hepcidin in C57Bl/6 male mice fed a standard or iron-enriched diet for 16 weeks. Iron supplementation increased hepatic iron and serum hepcidin fivefold and led to a 40% increase in fasting glucose due to insulin resistance, as confirmed by the insulin tolerance test, and to threefold higher levels of triglycerides. Iron supplemented mice had lower visceral adipose tissue mass estimated by epididymal fat pad, associated with iron accumulation in adipocytes. Decreased insulin signaling, evaluated by the phospho-Akt/Akt ratio, was detected in the visceral adipose tissue of iron overloaded mice, and gene expression analysis of visceral adipose tissue showed that an iron-enriched diet up-regulated iron-responsive genes and adipokines, favoring insulin resistance, whereas lipoprotein lipase was down-regulated. This resulted in hyperresistinemia and increased visceral adipose tissue expression of suppressor of cytokine signaling-3 (Socs3), a target of resistin and hepcidin implicated in insulin resistance. Acute hepcidin administration down-regulated lipoprotein lipase and up-regulated Socs3 in visceral adipose tissue. In conclusion, we characterized a model of dysmetabolic iron overload syndrome in which an iron-enriched diet induces insulin resistance and hypertriglyceridemia and affects visceral adipose tissue metabolism by a mechanism involving hepcidin up-regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.