Bacillus pasteurii UreG, a chaperone involved in the urease active site assembly, was overexpressed in Escherichia coli BL21(DE3) and purified to homogeneity. The identity of the recombinant protein was confirmed by SDS-PAGE, protein sequencing, and mass spectrometry. A combination of size exclusion chromatography and multiangle and dynamic laser light scattering established that BpUreG is present in solution as a dimer. Analysis of circular dichroism spectra indicated that the protein contains large portions of helices (15%) and strands (29%), whereas NMR spectroscopy indicated the presence of conformational fluxionality of the protein backbone in solution. BpUreG catalyzes the hydrolysis of GTP with a k cat ؍ 0.04 min ؊1 , confirming a role for this class of proteins in coupling energy requirements and nickel incorporation into the urease active site. BpUreG binds two Zn 2؉ ions per dimer, with a K D ؍ 42 ؎ 3 M, and has a 10-fold lower affinity for Ni 2؉ . A structural model for BpUreG was calculated by using threading algorithms. The protein, in the fully folded state, features the typical structural architecture of GTPases, with an open -barrel surrounded by ␣-helices and a P-loop at the N terminus. The protein dynamic behavior observed in solution is critically discussed relative to the structural model, using algorithms for disorder predictions. The results suggest that UreG proteins belong to the class of intrinsically unstructured proteins that need the interaction with cofactors or other protein partners to perform their function. It is also proposed that metal ions such as Zn 2؉ could have important structural roles in the urease activation process.
UreE is a homodimeric metallo-chaperone that assists the insertion of Ni(2+) ions in the active site of urease. The crystal structures of UreE from Bacillus pasteurii and Klebsiella aerogenes have been determined, but the details of the nickel-binding site were not elucidated due to solid-state effects that caused disorder in a key portion of the protein. A complementary approach to this problem is described here. Titrations of wild-type Bacillus pasteurii UreE (BpUreE) with Ni(2+), followed by metal ion quantitative analysis using inductively coupled plasma optical emission spectrometry (ICP-OES), established the binding of 2 Ni(2+) ions to the functional dimer, with an overall dissociation constant K(D) = 35 microM. To establish the nature, the number, and the geometry of the ligands around the Ni(2+) ions in BpUreE-Ni(2), X-ray absorption spectroscopy data were collected and analyzed using an approach that combines ab initio extended X-ray absorption fine structure (EXAFS) calculations with a systematic search of several possible coordination geometries, using the Simplex algorithm. This analysis indicated the presence of Ni(2+) ions in octahedral coordination geometry and an average of two histidine residues and four O/N ligands bound to each metal ion. The fit improved significantly with the incorporation, in the model, of a Ni-O-Ni moiety, suggesting the presence of a hydroxide-bridged dinuclear cluster in the Ni-loaded BpUreE. These results were interpreted using two possible models. One model involves the presence of two identical metal sites binding Ni(2+) with negative cooperativity, with each metal ion bound to the conserved His(100) as well as to either His(145) or His(147) from each monomer, residues found largely conserved at the C-terminal. The alternative model comprises the presence of two different binding sites featuring different affinity for Ni(2+). This latter model would involve the presence of a dinuclear metallic core, with one Ni(2+) ion bound to one His(100) from each monomer, and the second Ni(2+) ion bound to a pair of either His(145) or His(147). The arguments in favor of one model as compared to the other are discussed on the basis of the available biochemical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.