Biomaterials used in the ocular environment should exhibit specific tribological behavior to avoid discomfort and stress-induced epithelial damage during blinking. In this study, two macromolecules that are commonly employed as ocular biomaterials, namely, poly(vinylpyrrolidone) (PVP) and hyaluronan (HA), are compared with two known model glycoproteins, namely bovine submaxillary mucin (BSM) and α-acid glycoprotein (AGP), with regard to their nonfouling efficiency, wettability, and tribological properties when freely present in the lubricant, enabling spontaneous adsorption, and when chemisorbed under low contact pressures. Chemisorbed coatings were prepared by means of photochemically triggered nitrene insertion reactions. BSM and AGP provided boundary lubrication when spontaneously adsorbed in a hydrophobic contact with a coefficient of friction (CoF) of ∼0.03-0.04. PVP and HA were found to be excellent boundary lubricants when chemisorbed (CoF ≤ 0.01). Notably, high-molecular-weight PVP generated thick adlayers, typically around 14 nm, and was able to reduce the CoF below 0.005 when slid against a BSM-coated poly(dimethylsiloxane) pin in a tearlike fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.