Let P and Q be the stochastic transition operators of two time-homogeneous, irreducible Markov chains with countable, discrete state spaces X and Y, respectively. On the Cartesian product Z = X x Y, define a transition operator of the form Ra = a·P + (1 — a) · Q, 0 < a < 1, where P is considered to act on the first variable and Q on the second. The principal purpose of this paper is to describe the minimal Martin boundary of Ra (consisting of the minimal positive eigenfunctions of Ra with respect to some eigenvalue t, also called t-harmonic functions) in terms of the minimal Martin boundaries of P and Q.
Abstract. We prove admissible convergence to the boundary of functions that are harmonic on a subset of a homogeneous tree by means of a discrete Green formula and an analogue of the Lusin area function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.