In this paper, a methodology based on data-driven models is developed to predict the NOx emissions of an internal combustion engine using, as inputs, a set of ECU channels representing the main engine actuations. Several regressors derived from the machine learning and deep learning algorithms are tested and compared in terms of prediction accuracy and computational efficiency to assess the most suitable for the aim of this work. Six Real Driving Emission (RDE) cycles performed at the roll bench were used for the model training, while another two RDE cycles and a steady-state map of NOx emissions were used to test the model under dynamic and stationary conditions, respectively. The models considered include Polynomial Regressor (PR), Support Vector Regressor (SVR), Random Forest Regressor (RF), Light Gradient Boosting Regressor (LightGBR) and Feed-Forward Neural Network (ANN). Ensemble methods such as Random Forest and LightGBR proved to have similar performances in terms of prediction accuracy, with LightGBR requiring a much lower training time. Afterwards, LightGBR predictions are compared with experimental NOx measurements in steady-state conditions and during two RDE cycles. Coefficient of determination (R2), normalized root mean squared error (nRMSE) and mean average percentage error (MAPE) are the main metrics used. The NOx emissions predicted by the LightGBR show good coherence with the experimental test set, both with the steady-state NOx map (R2 = 0.91 and MAPE = 6.42%) and with the RDE cycles (R2 = 0.95 and nRMSE = 0.04).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.