A fast new algorithm (Fingerprints for Ligands And Proteins or FLAP) able to describe small molecules and protein structures using a common reference framework of four-point pharmacophore fingerprints and a molecular-cavity shape is described in detail. The procedure starts by using the GRID force field to calculate molecular interaction fields, which are then used to identify particular target locations where an energetic interaction with small molecular features would be very favorable. The target points thus calculated are then used by FLAP to build all possible four-point pharmacophores present in the given target site. A related approach can be applied to small molecules, using directly the GRID atom types to identify pharmacophoric features, and this complementary description of the target and ligand then leads to several novel applications. FLAP can be used for selectivity studies or similarity analyses in order to compare macromolecules without superposing them. Protein families can be compared and clustered into target classes, without bias from previous knowledge and without requiring protein superposition, alignment, or knowledge-based comparison. FLAP can be used effectively for ligand-based virtual screening and structure-based virtual screening, with the pharmacophore molecular recognition. Finally, the new method can calculate descriptors for chemometric analysis and can initiate a docking procedure. This paper presents the background to the new procedure and includes case studies illustrating several relevant applications of the new approach.
An advanced variable selection procedure, called GOLPE, aimed at obtaining PLS regression models with the highest prediction ability is presented and illustrated with an application in 3D‐QSAR. Key steps in the procedure are a preliminary variable selection by means of a D‐optimal design in the loading space, and an iterative evaluation of the effects of individual variables on the model predictivity based on the validation of a number of reduced models, on variables combinations selected according to a FFD strategy. The procedure is successfully applied to a real 3D‐QSAR case study: the results obtained by GOLPE are compared with those obtained by CoMFA and found to be in good agreement in terms of variable importance, but with a much higher prediction ability. Accordingly, the results encourage to think that it might be used within the CoMFA framework in the place of the present PLS version there, or in CoMFA‐like studies on the structures generated by GRID probes.
The performance of FLAP (Fingerprints for Ligands and Proteins) in virtual screening is assessed using a subset of the DUD (Directory of Useful Decoys) benchmarking data set containing 13 targets each with more than 15 different chemotype classes. A variety of ligand and receptor-based virtual screening approaches are examined, using combinations of individual templates 2D structures of known actives, a cocrystallized ligand, a receptor structure, or a cocrystallized ligand-biased receptor structure. We examine several data fusion approaches to combine the results of the individual virtual screens. In doing so, we show that excellent chemotype enrichment is achieved in both single target ligand-based and receptor-based approaches, of approximately 17-fold over random on average at a false positive rate of 1%. We also show that using as much starting knowledge as possible improves chemotype enrichment, and that data fusion using Pareto ranking is an effective method to do this giving up to 50% improvement in enrichment over the single methods. Finally we show that if inactivity or decoy data is incorporated, automatically training the scoring function in FLAP improves recovery still further, with almost 2-fold improvement over the enrichments shown by the single methods. The results clearly demonstrate the utility of FLAP for virtual screening when either a limited or wide range of prior knowledge is available.
The structural comparison of protein binding sites is increasingly important in drug design; identifying structurally similar sites can be useful for techniques such as drug repurposing, and also in a polypharmacological approach to deliberately affect multiple targets in a disease pathway, or to explain unwanted off-target effects. Once similar sites are identified, identifying local differences can aid in the design of selectivity. Such an approach moves away from the classical "one target one drug" approach and toward a wider systems biology paradigm. Here, we report a semiautomated approach, called BioGPS, that is based on the software FLAP which combines GRID Molecular Interactions Fields (MIFs) and pharmacophoric fingerprints. BioGPS comprises the automatic preparation of protein structure data, identification of binding sites, and subsequent comparison by aligning the sites and directly comparing the MIFs. Chemometric approaches are included to reduce the complexity of the resulting data on large datasets, enabling focus on the most relevant information. Individual site similarities can be analyzed in terms of their Pharmacophoric Interaction Field (PIF) similarity, and importantly the differences in their PIFs can be extracted. Here we describe the BioGPS approach, and demonstrate its applicability to rationalize off-target effects (ERα and SERCA), to classify protein families and explain polypharmacology (ABL1 kinase and NQO2), and to rationalize selectivity between subfamilies (MAP kinases p38α/ERK2 and PPARδ/PPARγ). The examples shown demonstrate a significant validation of the method and illustrate the effectiveness of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.