BackgroundThe study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden.MethodsHere, we analyzed a set of synthetic transcriptional cascades in Escherichia coli. We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively.ResultsAmong the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour.ConclusionsSuperior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.Electronic supplementary materialThe online version of this article (10.1186/s13036-017-0090-3) contains supplementary material, which is available to authorized users.
CRISPRi-mediated gene regulation allows simultaneous control of many genes. However, highly specific sgRNA-promoter binding is, alone, insufficient to achieve independent transcriptional regulation of multiple targets. Indeed, due to competition for dCas9, the repression ability of one sgRNA changes significantly when another sgRNA becomes expressed. To solve this problem and decouple sgRNA-mediated regulatory paths, we create a dCas9 concentration regulator that implements negative feedback on dCas9 level. This allows any sgRNA to maintain an approximately constant dose-response curve, independent of other sgRNAs. We demonstrate the regulator performance on both single-stage and layered CRISPRi-based genetic circuits, zeroing competition effects of up to 15-fold changes in circuit I/O response encountered without the dCas9 regulator. The dCas9 regulator decouples sgRNA-mediated regulatory paths, enabling concurrent and independent regulation of multiple genes. This allows predictable composition of CRISPRi-based genetic modules, which is essential in the design of larger scale synthetic genetic circuits.
MicroRNAs, highly-conserved small RNAs, act as key regulators of many biological functions in both plants and animals by post-transcriptionally regulating gene expression through interactions with their target mRNAs. The microRNA research is a dynamic field, in which new and unconventional aspects are emerging alongside well-established roles in development and stress adaptation. A recent hypothesis states that miRNAs can be transferred from one species to another and potentially target genes across distant species. Here, we propose to look into the trans-kingdom potential of miRNAs as a tool to bridge conserved pathways between plant and human cells. To this aim, a novel multi-faceted bioinformatic analysis pipeline was developed, enabling the investigation of common biological processes and genes targeted in plant and human transcriptome by a set of publicly available Medicago truncatula miRNAs. Multiple datasets, including miRNA, gene, transcript and protein sequences, expression profiles and genetic interactions, were used. Three different strategies were employed, namely a network-based pipeline, an alignment-based pipeline, and a M. truncatula network reconstruction approach, to study functional modules and to evaluate gene/protein similarities among miRNA targets. The results were compared in order to find common features, e.g., microRNAs targeting similar processes. Biological processes like exocytosis and response to viruses were common denominators in the investigated species. Since the involvement of miRNAs in the regulation of DNA damage response (DDR)-associated pathways is barely explored, especially in the plant kingdom, a special attention is given to this aspect. Hereby, miRNAs predicted to target genes involved in DNA repair, recombination and replication, chromatin remodeling, cell cycle and cell death were identified in both plants and humans, paving the way for future interdisciplinary advancements.
CRISPRi-mediated gene repression allows simultaneous control of many genes. However, despite highly specific sgRNA-promoter binding, multiple sgRNAs still interfere with one another by competing for dCas9. We created a dCas9 regulator that adjusts dCas9 concentration based on sgRNAs' demand, mitigating competition in CRISPRi-based logic gates. The regulator's performance is demonstrated on both single-stage and layered CRISPRi logic gates and in two common E. coli strains. When a competitor sgRNA causes between two and ~25 fold-change in a logic gate's input/output response without dCas9 regulator, the response is essentially unchanged when the regulator is used. The dCas9 regulator thus enables concurrent and independent operation of multiple sgRNAs, thereby supporting independent control of multiple genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.