The Western Mediterranean basin has been formed by Miocene back-arc extension and is underlain by a thin and young lithosphere. This young lithosphere is warm, as testified by an overall elevated offshore heat flow. Heat flow within the Western Mediterranean is, however, highly variable and existing data are unevenly distributed and poorly studied in the central part of the Liguro-Provençal and Algero-Balearic basins. This central part is floored by a young oceanic crust, bordered by different continental margins, cut by transform faults, and filled by up to 8 km of sediments. We present a total of 148 new heat flow data collected during the MedSalt and WestMedFlux cruises in 2015 and 2016 and aligned along seven regional profiles that show an important heat flow variability on the basin-scale, but also locally on the margins. A new heat flow map for the Western Mediterranean outlines the following regional features: (1) a higher average heat flow in the Algero-Balearic basin compared to the Liguro-Provençal basin (94 ± 13 mW/m² and 78 ±16 mW/m², respectively), and (2) a regional thermal asymmetry in both basins, but with opposed heat flow trends. Up to twenty percent of this heat flow difference can be explained by sediment blanketing, but age and heterogeneity of ocean crust due to an asymmetric and polyphased opening of the basins are believed to have given the major thermal imprint. Estimates of the age of the oceanic crust based on the new heat flow suggest a considerably younger West Algerian basin (16-23 Ma) compared to the East Algerian basin and the West Sardinia oceanic floor (31-37 Ma). On the margins and ocean-continent transitions of the Western Mediterranean the new heat flow data point out the existence of two types of local anomalies (length scale 5-30 km): (1) locally increased heat flow up to 153 mW/m² on the Gulf of Lion margin results from thermal refraction of large salt diapirs, and (2) the co-existing of both low (< 50 mW/m²) and high (> 110 mW/m²) heat flow areas on the South Balearic margin suggests a heat redistribution system. We suspect the lateral
Megabeds are thick sedimentary layers extending over thousands square kilometres in deep sea basins and are thought to result from large slope failures triggered by major external events. Such deposits have been found in at least three areas of the Mediterranean Sea. Although their discovery dates back to the early 1980s, many questions remain, concerning their initiation, source area, extent, and the nature of their emplacement. One of the largest previously documented megabeds was emplaced during the Last Glacial Maximum across the Balearic Abyssal Plain with a thickness of 8-10 m in water depths of up to 2800 m. New 3.5 kHz sub-bottom profiles and sediment cores provide greater constraint on the lateral variability of the megabed and allow to map it beyond previous estimates, with a revised areal extent up to 90,000-100,000 km 2. Megabed terminations show gradual pinch-out to the West and an abrupt eastward termination against the Sardinia steep margin. The megabed presents both in seismic profiles and in sediment cores a tripartite subdivision likely corresponding to changes in flow regimes across the basin with a central area of sandy facies and erosional base oriented NNE-SSW allowing renewed discussions about sources and trigger of the megabed.
<p>Salt tectonics at salt-bearing margins is often interpreted as the combination of gravity spreading and gravity gliding, mainly driven by differential sedimentary loading and margin tilting, respectively. Nevertheless, in the Western Mediterranean Sea, the classical salt tectonics models are incoherent with its morpho-structural setting: the Messinian salt was deposited in a closed system, formed several Ma before the deposition, horizontally in the entire deep basins, above a homogenous multi-kilometre pre-Messinian thickness. The subsidence is purely vertical in the deep basin, implying a regional constant initial salt thickness, the post-salt overburden is homogenous and the distal salt deformation occurred before the mid-lower slope normal faults activation. Instead, the compilation of MCS and wide-angle seismic data highlighted a clear coincidence between crustal segmentation and salt morphology domains. The geometrical variation of salt structures seems to be related to the underlying crustal nature segmentation. Regional thermal anomalies and/or fluid escapes, associated with the exhumation phase, or the mantle heat segmentation, could therefore play a role in adding a further component on the already known salt tectonics mechanisms. The compilation of crustal segmentation and salt morphologies in different salt-bearing margins, such as the Santos, Angolan, Gulf of Mexico and Morocco-Nova Scotia margins, seems to depict the same coincidence. In view of what is observed in Western Mediterranean Sea, the heat segmentation influence in the passive margins should not be overlooked and deserves further investigation.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.