PURPOSE: When calculating the power of an intraocular lens (IOL) with conventional methods in eyes that have previously undergone refractive surgery, in most cases the power is inaccurate. To minimize these errors, a new IOL power calculation formula was developed.
METHODS: A theoretical formula empirically adjusted two variables: 1) the corneal power and 2) the anterior chamber depth (ACD). From the average curvature of the entrance pupil area, weighted according to the Stiles-Crawford effect, the corneal power is calculated by using a relative keratometric index that is a function of the actual corneal curvature, type of keratorefractive surgery, and induced refractive change. Anterior chamber depth is a function of the preoperative ACD, lens thickness, axial length, and the ACD constant. We used our formula in 20 eyes that previously underwent refractive surgery (photorefractive keratectomy [n=6], laser subepithelial keratomileusis [n=3], laser in situ keratomileusis [n=6], and radial keratotomy [n=5]) and compared our results to other formulas.
RESULTS: Mean postoperative spherical equivalent refraction was +0.26 diopters (D) (standard deviation [SD] 0.73, range: -1.25 to +1.58 D) using our formula, +2.76 D (SD 1.03, range: +0.94 to +4.47 D) using the SRK II, +1.44 D (SD 0.97, range: +0.05 to +4.01 D) with Binkhorst, 1.83 D (SD 1.00, range: -0.26 to +4.21 D) with Holladay I, and -2.04 D (SD 2.19, range: -7.29 to +1.62 D) with Rosa's method. With our formula, 60% of absolute refractive prediction errors were within 0.50 D, 80% within 1.00 D, and 93% within 1.50 D.
CONCLUSIONS: In this first series of patients, we obtained encouraging results. With a greater number of cases, all statistical adjustments related to the different types of surgery should be improved. [J Refract Surg. 2006;22:187-199.]