In 1970, Perutz tried to put the allosteric mechanism of hemoglobin, proposed by Monod, Wyman and Changeux in 1965, on a stereochemical basis. He interpreted their two-state model in terms of an equilibrium between two alternative structures, a tense one (T) with low oxygen affinity, constrained by salt-bridges between the C-termini of the four subunits, and a relaxed one (R) lacking these bridges. The equilibrium was thought to be governed primarily by the positions of the iron atoms relative to the porphyrin: out-of-plane in five-coordinated, high-spin deoxyhemoglobin, and in-plane in six-coordinated, low-spin oxyhemoglobin. The tension exercised by the salt-bridges in the T-structure was to be transmitted to the heme-linked histidines and to restrain the movement of the iron atoms into the porphyrin plane that is necessary for oxygen binding. At the beta-hemes, the distal valine and histidine block the oxygen-combining site in the T-structure; its tension was thought to strengthen that blockage. Finally, Perutz attributed the linearity of proton release with early oxygen uptake to the sequential rupture of salt-bridges in the T-structure and to the accompanying drop in pKa of the weak bases that form part of them. Almost every feature of this mechanism has been disputed, but evidence that has come to light more than 25 years later now shows it to have been substantially correct. That new evidence is reviewed below.
Biological systems rely on heme-proteins to carry out a number of basic functions essential for their survival. Hemes, or iron-porphyrin complexes, are the versatile and ubiquitous active centers of these proteins. In the past decade, discovery of new heme-proteins, together with functional and structural research, provided a wealth of information on these diverse and biologically important molecules. Structure determination work has shown that nature has used a variety of different scaffolds and architectures to bind heme and modulate functions such as redox properties. Structural data have also provided insights into the heme-linked protein conformational changes required in many regulatory heme-proteins. Remarkable efforts have been made towards the understanding of factors governing redox potentials. Site-directed mutagenesis studies and theoretical calculations on heme environments investigated the roles of hydrophobic and electrostatic residues, and analyzed the effect of heme solvent accessibility. This review focuses on the structure-function relationships underlying the association of heme in signaling and iron metabolism proteins. In addition, an account is given about molecular features affecting heme's redox properties; this briefly revisits previous conclusions in the light of some more recent reports. 271
Many proteins involved in key biological processes are modular in nature. A group of these, the beta-propeller proteins, fold by packing 4-stranded beta-sheets in a circular array. The members of this group are increasingly numerous and, although their modular building blocks all preserve the same basic conformation, they do not have similar sequences. These proteins have extreme functional and phylogenetic diversity. Here, features of the beta-propeller fold are reviewed through comparisons of available structural coordinates. Structure-based sequence alignments combined with analyses of superpositions of individual modular units reveal conserved general features such as hydrogen bonds, beta-turns and positions of hydrophobic contacts. The lack of significant sequence identity is compensated by sets of interactions which stabilise the fold differently in distinct structures. Re-occurring aspartates make contacts to exposed backbone amides in turns or peptide connections within the same sheet. The sole factor responsible for the number of sheets that assemble in the array is the size of the hydrophobic residues that pack into the cores between the sheets. Whilst there is no overall sequence conservation, it may be possible to detect new members of this fold through sequence searches that take into account the repeated nature of the modular assembly as well as the positions of hydrophobic residues and H-bonding side chains.
Recent structure determinations have made new additions to a set of strikingly different sequences that give rise to the same topology. Proteins with a beta propeller fold are characterized by extreme sequence diversity despite the similarity in their three-dimensional structures. Several fold predictions, based in part on sequence repeats thought to match modular beta sheets, have been proved correct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.