The synthesis of a new class of amphiphilic calix[4]arene-based ionophores, relying on direct reductive amination as a key step, and the evaluation of their H+ and Na+ transporting properties is described.
The reduction of 1,3-diketones and β-hydroxyketones with NaBH(4) in aqueous acetonitrile is highly stereoselective in the presence of stoichiometric amounts of bovine or human albumin, giving anti 1,3-diols with d.e. up to 96%. The same reaction, without albumin, gives syn and anti 1,3-diols in approximately 1:1 ratio. The presence of an aromatic carbonyl group is essential for diastereoselectivity in the NaBH(4)/albumin reduction of both 1,3-diketones and β-hydroxyketones. Thus, 3-hydroxy-1-(p-tolyl)-1-butanone is stereoselectively reduced in the presence of albumin, while reduction of its isomer 4-(p-tolyl)-4-hydroxy-2-butanone is not stereoselective. The albumin-controlled reduction is not stereospecific as both enantiomers of 1-aryl-3-hydroxy-1-butanones are reduced to diols with identical stereoselectivities. Circular dichroism of the bound substrates confirms that aromatic ketones are recognized by the protein's IIA binding site. Binding studies also suggest that 1,3-diketones are recognized in their enol form. From the effect of pH on binding of a diketone it is concluded that, in the complex with the substrate, ionizable residues His242 and Lys199 are in the neutral and protonated forms, respectively. A homology model of BSA was obtained and docking of model substrates confirms the preference of the protein for aromatic ketones. Modelling of the complexes with the substrates also allows us to propose a mechanism for the reduction of 1,3-diketones in which the chemoselective reduction of the first (aliphatic) carbonyl is followed by the diastereoselective reduction of the second (aromatic) carbonyl. The role of albumin is thus a combination of chemo- and stereocontrol.
An unprecedented combination of high chemo- and stereoselectivity in the NaBH4 reduction of 1:1 complexes between albumin and aromatic 1,3-diketones results in the formation of anti 1,3-diols with de up to 96%.
Two new synthetic ionophores in which the hydrophobic portion is represented by a short helical Aib-peptide (Aib=α-amino-isobutyric acid) and the hydrophilic one is a poly-amino (1a) or a polyether (1b) chain have been prepared. The two conjugates show a high ionophoric activity in phospholipid membranes being able to efficiently dissipate a pH gradient and, in the case of 1b, to transport Na(+) across the membrane. Bioactivity evaluation of the two conjugates shows that 1a has a moderate antimicrobial activity against a broad spectrum of microorganisms and it is able to permeabilize the inner and the outer membrane of Escherichia coli cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.