Several plant bioactive compounds have exhibited functional activities that suggest they could play a remarkable role in preventing a wide range of chronic diseases. The largest group of naturally-occurring polyphenols are the flavonoids, including apigenin. The present work is an updated overview of apigenin, focusing on its health-promoting effects/therapeutic functions and, in particular, results of in vivo research. In addition to an introduction to its chemistry, nutraceutical features have also been described. The main key findings from in vivo research, including animal models and human studies, are summarized. The beneficial indications are reported and discussed in detail, including effects in diabetes, amnesia and Alzheimer’s disease, depression and insomnia, cancer, etc. Finally, data on flavonoids from the main public databases are gathered to highlight the apigenin’s key role in dietary assessment and in the evaluation of a formulated diet, to determine exposure and to investigate its health effects in vivo.
Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term “nanoparticle” stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.
This review gives an updated picture of each class of phenolic compounds and their properties. The most common classification implies the subdivision of phenolics in two main groups: flavonoids (e.g., anthocyanins, flavanols, flavanones, flavonols, flavonones, and isoflavones) and non‐flavonoids (e.g., phenolic acids, xanthones, stilbens, lignans, and tannins) polyphenols. The great interest in polyphenols is associated with their high potential application for food preservation and for therapeutic beneficial use. The relationship between polyphenol intake and human health has been exploited with special reference to cardiovascular diseases, hypertension, diabetes, metabolic syndrome, obesity, and cancer. The use of current existing databases of bioactive compounds including polyphenols is described as key tools for human health research.
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.
Protein solubility of raw and cooked faba bean, lentil, chickpea, and dry bean was tested in water and in NaCl in the pH range 1.0−13.0. The solubility of all legume proteins in water typically increased on both sides of pH 4.0. In NaCl, only solubility of raw dry bean proteins was improved. A marked reduction in protein solubility was observed after cooking of all legumes up to pH 10.0, where solubilization occurred, suggesting that it was dependent on deprotonation of lysine and arginine. Amino acid analysis showed that the protein fraction that retained solubility in water (pH 6.5) after cooking had a high amount of arginine and glutamic acid, low levels of hydrophobic amino acids, and, therefore, a much higher charge density than proteins in the whole flour. The SE-HPLC profiles indicated that water-soluble raw faba bean and lentil had main protein peaks of a higher molecular weight than those of dry bean or chickpea, thus suggesting a higher trend toward association. In vitro protein digestibility of faba bean and lentil, unlike that of chickpea and dry bean, was not improved upon cooking. The results indicate that, in addition to hydrophobic forces, basic residues are involved in the stabilization of heat-induced aggregates of legume proteins, possibly contributing to their low digestibility. Keywords: Legumes; globulins; solubility; digestibility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.