BackgroundThe combination of early transmitral inflow velocity and mitral annular tissue Doppler imaging (E/Em ratio) is widely applied to noninvasively estimate left ventricular (LV) filling pressures. However E/Em ratio has a significant gray zone and its accuracy in patients with heart failure is debated. Left atrial (LA) deformation analysis by speckle tracking echocardiography (STE) was recently proposed as an alternative approach to estimate LV filling pressures. This study aimed at exploring the correlation of LA longitudinal function by STE and Doppler measurements with direct measurements of LV filling pressures in patients with heart failure.MethodsA total of 36 patients with advanced systolic heart failure (ejection fraction ≤35%), undergoing right heart catheterization, were studied. Simultaneously to pulmonary capillary wedge pressure (PCWP) determination, peak atrial longitudinal strain (PALS) and mean E/Em ratio were measured in all subjects by two independent operators. PALS values were obtained by averaging all segments (global PALS), and by separately averaging segments measured in the 4-chamber and 2-chamber views.ResultsNot significant correlation was found between mean E/Em ratio and PCWP (R = 0.15). A close negative correlation between global PALS and the PCWP was found (R = -0.81, p < 0.0001). Furthermore, global PALS demonstrated the highest diagnostic accuracy (AUC of 0.93) and excellent sensitivity and specificity of 100% and 93%, respectively, to predict elevated filling pressure using a cutoff value less than 15.1%. Bland-Altman analysis confirmed this close agreement between PCWP estimated by global PALS and invasive PCWP (mean bias 0.1 ± 8.0 mmHg).ConclusionIn a group of patients with advanced systolic heart failure, E/Em ratio correlated poorly with invasively obtained LV filling pressures. However, LA longitudinal deformation analysis by STE correlated well with PCWP, providing a better estimation of LV filling pressures in this particular clinical setting.
I(f) is present in human LVMs. Its electrophysiological characteristics resemble those previously described in hypertrophied rat LVMs and suggest that I(f) could be an arrhythmogenic mechanism in patients with severe heart failure.
Abstract-In 76 patients with heart failure (HF) (New York Heart Association [NYHA] classes I through IV) and in 15 control subjects, cardiac angiotensin II (Ang II) generation and its relationship with left ventricular function were investigated by measuring aorta-coronary sinus concentration gradients of endogenous angiotensins and in a part of patients by studying 125 I-labeled Ang I kinetics. Gene expression and cellular localization of the cardiac renin-angiotensin system components, the density of AT 1 and AT 2 on membranes and isolated myocytes, and the capacity of isolated myocytes for synthesizing the hypertrophying growth factors insulin-like growth factor-I (IGF-I) and endothelin (ET)-1 were also investigated on 22 HF explanted hearts (NYHA classes III and IV) and 7 nonfailing (NF) donor hearts. Ang II generation increased with progression of HF, and end-systolic wall stress was the only independent predictor of Ang II formation. Angiotensinogen and angiotensin-converting enzyme mRNA levels were elevated in HF hearts, whereas chymase levels were not, and mRNAs were almost exclusively expressed on nonmyocyte cells. Ang II was immunohistochemically detectable both on myocytes and interstitial cells. Binding studies showed that AT 1 density on failing myocytes did not differ from that of NF myocytes, with preserved AT 1 /AT 2 ratio. Conversely, AT 1 density was lower in failing membranes than in NF ones. Ang II induced IGF-I and ET-1 synthesis by isolated NF myocytes, whereas failing myocytes were unable to respond to Ang II stimulation. This study demonstrates that (1) the clinical course of HF is associated with progressive increase in cardiac Ang II formation, (2) AT 1 density does not change on failing myocytes, and (3)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.