Tumor microenvironment coevolves with and simultaneously sustains cancer progression. In prostate carcinoma (PCa), cancer associated fibroblasts (CAF) have been shown to fuel tumor development and metastasis by mutually interacting with tumor cells. Molecular mechanisms leading to activation of CAFs from tissue-resident fibroblasts, circulating bone marrow-derived fibroblast progenitors or mesenchymal stem cells are largely unknown. Through integrated gene and microRNA expression profiling, we showed that PCa-derived CAF transcriptome strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus proving evidence, for the first time, that the cytokine is able per se to induce most of the transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGFβ-related signatures, indicating that either signal, depending on the context, may concur to fibroblast activation. Our analyses also highlighted novel pathways potentially relevant for induction of a reactive stroma. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression.Overall, we provided insights into the molecular mechanisms driving fibroblast activation in PCa, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.