During explosive eruptions, emergency responders and government agencies need to make fast decisions that should be based on an accurate forecast of tephra dispersal and assessment of the expected impact. Here, we propose a new operational tephra fallout monitoring and forecasting system based on quantitative volcanological observations and modelling. The new system runs at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE) and is able to provide a reliable hazard assessment to the National Department of Civil Protection (DPC) during explosive eruptions. The new operational system combines data from low-cost calibrated visible cameras and satellite images to estimate the variation of column height with time and model volcanic plume and fallout in near-real-time (NRT). The new system has three main objectives: (i) to determine column height in NRT using multiple sensors (calibrated cameras and satellite images); (ii) to compute isomass and isopleth maps of tephra deposits in NRT; (iii) to help the DPC to best select the eruption scenarios run daily by INGV-OE every three hours. A particular novel feature of the new system is the computation of an isopleth map, which helps to identify the region of sedimentation of large clasts (≥5 cm) that could cause injuries to tourists, hikers, guides, and scientists, as well as damage buildings in the proximity of the summit craters. The proposed system could be easily adapted to other volcano observatories worldwide. medium lapilli has been widely considered as a primary risk agent related to explosive volcanic activity, fallout of coarse lapilli to small blocks falling from plume margins has been underrated. As an example, during the event at Etna on 23 November 2013, clasts from several centimeters to decimeters fell within 5-6 km from the summit and hit hikers who were in the touristic areas [8]. Although the assessment of tephra fallout and dispersal in distal areas has been largely considered [9][10][11][12], the reduction of volcanic impacts in proximal areas and within the first hour from the beginning of the eruption is still a challenge. As a matter of fact, regardless of the importance of this information for emergency responders and government agencies, the operational systems capable of monitoring tephra dispersal and fallout in near-real-time (NRT) and returning the expected impact assessment are still limited and not fully adapted to the growing requirements of precision and reliability.A good example of NRT tephra detection in volcano observatories is represented by the Alaska Volcano Observatory (AVO), which monitors volcanoes within the North Pacific region [13]. The AVO system analyzes data from different satellite sensors. They use a 24/7 automated ash cloud detection algorithm that sends emails and phone text alerts to the AVO members, who are, in turn, responsible for verifying if the automatic alert can be considered as true or false [13]. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors 36 active volcanoes in ...
The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.
From 2011 to 2015, 49 lava fountains occurred at Etna volcano. In this work, the measurements carried out from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument, on board the Meteosat Second Generation (MSG) geostationary satellite, are processed to realize a proximal monitoring of the eruptive activity for each event. The SEVIRI measurements are managed to provide the time series of start and duration of eruption and fountains, Time Averaged Discharge Rate (TADR) and Volcanic Plume Top Height (VPTH). Due to its temperature responsivity, the eruptions start and duration, fountains start and duration and TADR are realized by exploiting the SEVIRI 3.9 µm channel, while the VPTH is carried out by applying a simplified procedure based on the SEVIRI 10.8 µm brightness temperature computation. For each event, the start, duration and TADR have been compared with ground-based observations. The VPTH time series is compared with the results obtained from a procedures-based on the volcanic cloud center of mass tracking in combination with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectories. The results indicate that SEVIRI is generally able to detect the start of the lava emission few hours before the ground measurements. A good agreement is found for both the start and the duration of the fountains and the VPTH with mean differences of about 1 h, 50 min and 1 km respectively.
On the morning of 24 December 2018, an eruptive event occurred at Etna, which was followed the next day by a strong sequence of shallow earthquakes. The eruptive episode lasted until 30 December, ranging from moderate strombolian to lava fountain activity coupled with vigorous ash/gas emissions and a lava flow effusion toward the eastern volcano flank of Valle del Bove. In this work, the data collected from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments on board the Meteosat Second Generation (MSG) geostationary satellite are used to characterize the Etna activity by estimating the proximal and distal eruption parameters in near real time. The inversion of data indicates the onset of eruption on 24 December at 11:15 UTC, a maximum Time Average Discharge Rate (TADR) of 8.3 m 3 /s, a cumulative lava volume emitted of 0.5 Mm 3 , and a Volcanic Plume Top Height (VPTH) that reached a maximum altitude of 8 km above sea level (asl). The volcanic cloud ash and SO 2 result totally collocated, with an ash amount generally lower than SO 2 except on 24 December during the climax phase. A total amount of about 100 and 35 kt of SO 2 and ash respectively was emitted during the entire eruptive period, while the SO 2 fluxes reached peaks of more than 600 kg/s, with a mean value of about 185 kg/s. The SEVIRI VPTH, ash/SO 2 masses, and flux time series have been compared with the results obtained from the ground-based visible (VIS) cameras and FLux Automatic MEasurements (FLAME) networks, and the satellite images collected by the MODerate resolution Imaging Spectroradiometer (MODIS) instruments on board the Terra and Aqua-polar satellites. The analysis indicates good agreement between SEVIRI, VIS camera, and MODIS retrievals with VPTH, ash, and SO 2 estimations all within measurement errors. The SEVIRI and FLAME SO 2 flux retrievals show significant discrepancies due to the presence of volcanic ash and a gap of data on the FLAME network. The results obtained in this study show the ability of geostationary satellite systems to characterize eruptive events from the source to the atmosphere in near real time during the day and night, thus offering a powerful tool to mitigate volcanic risk on both local population and airspace and to give insight on volcanic processes.
Land Surface Temperature (LST) from satellite data is a key component in many aspects of environmental research. In volcanic areas, LST is used to detect ground thermal anomalies providing a supplementary tool to monitor the activity status of a particular volcano. In this work, we describe a procedure aimed at identifying spatial thermal anomalies in thermal infrared (TIR) satellite frames which are corrected for the seasonal influence by using TIR images from ground stations. The procedure was applied to the volcanic area of Campi Flegrei (Italy) using TIR ASTER and Landsat 8 satellite imagery and TIR ground images acquired from the Thermal Infrared volcanic surveillance Network (TIRNet) (INGV, Osservatorio Vesuviano). The continuous TIRNet time-series images were processed to evaluate the seasonal component which was used to correct the surface temperatures estimated by the satellite’s discrete data. The results showed a good correspondence between de-seasoned time series of surface ground temperatures and satellite temperatures. The seasonal correction of satellite surface temperatures allows monitoring of the surface thermal field to be extended to all the satellite frames, covering a wide portion of Campi Flegrei volcanic area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.