This paper describes QCRI's participation in SemEval-2015 Task 3 "Answer Selection in Community Question Answering", which targeted real-life Web forums, and was offered in both Arabic and English. We apply a supervised machine learning approach considering a manifold of features including among others word n-grams, text similarity, sentiment analysis, the presence of specific words, and the context of a comment. Our approach was the best performing one in the Arabic subtask and the third best in the two English subtasks.
This paper shows that learning to rank models can be applied to automatically learn complex patterns, such as relational semantic structures occurring in questions and their answer passages. This is achieved by providing the learning algorithm with a tree representation derived from the syntactic trees of questions and passages connected by relational tags, where the latter are again provided by the means of automatic classifiers, i.e., question and focus classifiers and Named Entity Recognizers. This way effective structural relational patterns are implicitly encoded in the representation and can be automatically utilized by powerful machine learning models such as kernel methods.We conduct an extensive experimental evaluation of our models on well-known benchmarks from the question answer (QA) track of TREC challenges. The comparison with stateof-the-art systems and BM25 show a relative improvement in MAP of more than 14% and 45%, respectively. Further comparison on the task restricted to the answer sentence reranking shows an improvement in MAP of more than 8% over the state of the art.
We present a pairwise learning-to-rank approach to machine translation evaluation that learns to differentiate better from worse translations in the context of a given reference. We integrate several layers of linguistic information encapsulated in tree-based structures, making use of both the reference and the system output simultaneously, thus bringing our ranking closer to how humans evaluate translations. Most importantly, instead of deciding upfront which types of features are important, we use the learning framework of preference re-ranking kernels to learn the features automatically. The evaluation results show that learning in the proposed framework yields better correlation with humans than computing the direct similarity over the same type of structures. Also, we show our structural kernel learning (SKL) can be a general framework for MT evaluation, in which syntactic and semantic information can be naturally incorporated.
We present a novel approach to answering sequential questions based on structured objects such as knowledge bases or tables without using a logical form as an intermediate representation. We encode tables as graphs using a graph neural network model based on the Transformer architecture. The answers are then selected from the encoded graph using a pointer network. This model is appropriate for processing conversations around structured data, where the attention mechanism that selects the answers to a question can also be used to resolve conversational references. We demonstrate the validity of this approach with competitive results on the Sequential Question Answering (SQA) task (Iyyer et al., 2017).
In this paper, we study the impact of relational and syntactic representations for an interesting and challenging task: the automatic resolution of crossword puzzles. Automatic solvers are typically based on two answer retrieval modules: (i) a web search engine, e.g., Google, Bing, etc. and (ii) a database (DB) system for accessing previously resolved crossword puzzles. We show that learning to rank models based on relational syntactic structures defined between the clues and the answer can improve both modules above. In particular, our approach accesses the DB using a search engine and reranks its output by modeling paraphrasing. This improves on the MRR of previous system up to 53% in ranking answer candidates and greatly impacts on the resolution accuracy of crossword puzzles up to 15%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.